Publications

40 Results
Skip to search filters

Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks

Combustion Science and Technology

Armstrong, Elizabeth A.; Hansen, Michael A.; Knaus, Robert C.; Trask, Nathaniel A.; Hewson, John C.; Sutherland, James C.

Tabulated chemistry models are widely used to simulate large-scale turbulent fires in applications including energy generation and fire safety. Tabulation via piecewise Cartesian interpolation suffers from the curse-of-dimensionality, leading to a prohibitive exponential growth in parameters and memory usage as more dimensions are considered. Artificial neural networks (ANNs) have attracted attention for constructing surrogates for chemistry models due to their ability to perform high-dimensional approximation. However, due to well-known pathologies regarding the realization of suboptimal local minima during training, in practice they do not converge and provide unreliable accuracy. Partition of unity networks (POUnets) are a recently introduced family of ANNs which preserve notions of convergence while performing high-dimensional approximation, discovering a mesh-free partition of space which may be used to perform optimal polynomial approximation. In this work, we assess their performance with respect to accuracy and model complexity in reconstructing unstructured flamelet data representative of nonadiabatic pool fire models. Our results show that POUnets can provide the desirable accuracy of classical spline-based interpolants with the low memory footprint of traditional ANNs while converging faster to significantly lower errors than ANNs. For example, we observe POUnets obtaining target accuracies in two dimensions with 40 to 50 times less memory and roughly double the compression in three dimensions. We also address the practical matter of efficiently training accurate POUnets by studying convergence over key hyperparameters, the impact of partition/basis formulation, and the sensitivity to initialization.

More Details

A fast matrix-free approach to the high-order control volume finite element method with application to low-Mach flow

Computers and Fluids

Knaus, Robert C.

A fast matrix-free formulation of the control volume finite element method is presented, requiring much less memory and computational work than previous efforts. The method is implemented and evaluated as a solver for low-Mach flow, including the evaluation of a preconditioning strategy for the pressure Poisson equation. The efficiency and scaling with polynomial order is evaluated on simple turbulent flows of interest, with appropriate solution quality metrics, and compared with a reference node-centered finite volume discretization. For a turbulent channel flow test, we show improvement in computational work for a given accuracy with the high-order scheme. The performance on a GPU accelerated platform is also investigated, with benefit shown for the matrix-free discretization.

More Details

High-fidelity wind farm simulation methodology with experimental validation

Journal of Wind Engineering and Industrial Aerodynamics

Hsieh, Alan H.; Brown, Kenneth B.; deVelder, Nathaniel d.; Herges, Thomas H.; Knaus, Robert C.; Sakievich, Philip S.; Cheung, Lawrence C.; Houchens, Brent C.; Blaylock, Myra L.; Maniaci, David C.

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.

More Details

Harnessing exascale for whole wind farm high-fidelity simulations to improve wind farm efficiency

Crozier, Paul C.; Adcock, Christiane A.; Ananthan, Shreyas A.; Berger-Vergiat, Luc B.; Brazell, Michael B.; Brunhart-Lupo, Nicholas B.; Henry de Frahan, Marc T.; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy M.; Moser, Bob M.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Williams, Alan B.; Wilson, Robert V.; Yamazaki, Ichitaro Y.; Sprague, Michael S.

Abstract not provided.

FY2021 Q4: Demonstrate moving-grid multi-turbine simulations primarily run on GPUs and propose improvements for successful KPP-2 [Slides]

Adcock, Christiane A.; Ananthan, Shreyas A.; Berger-Vergiat, Luc B.; Brazell, Michael B.; Brunhart-Lupo, Nicholas B.; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy M.; Moser, Bob M.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Williams, Alan B.; Wilson, Robert V.; Yamazaki, Ichitaro Y.; Sprague, Michael S.

Isocontours of Q-criterion with velocity visualized in the wake for two NREL 5-MW turbines operating under uniform-inflow wind speed of 8 m/s. Simulation performed with the hybrid-Nalu-Wind/AMR-Wind solver.

More Details

Demonstrate moving-grid multi-turbine simulations primarily run on GPUs and propose improvements for successful KPP-2

Adcock, Christiane A.; Ananthan, Shreyas A.; Berget-Vergiat, Luc B.; Brazell, Michael B.; Brunhart-Lupo, Nicholas B.; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy M.; Moser, Bob M.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Williams, Alan B.; Wilson, Robert V.; Yamazaki, Ichitaro Y.; Sprague, Michael S.

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, capturing the thin boundary layers, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources.

More Details

DNS/LES Study of Representative Wall-Bounded Turbulent Flows using SIERRA/Fuego

Koo, Heeseok K.; Hewson, John C.; Brown, Alexander B.; Knaus, Robert C.; Kurzawski, Andrew K.; Clemenson, Michael D.

This report summarizes a series of SIERRA/Fuego validation efforts of turbulent flow models on canonical wall-bounded configurations. In particular, direct numerical simulations (DNS) and large eddy simulations (LES) turbulence models are tested on a periodic channel, a periodic pipe, and an open jet for which results are compared to the velocity profiles obtained theoretically or experimentally. Velocity inlet conditions for channel and pipe flows are developed for application to practical simulations. To show this capability, LES is performed over complex terrain in the form of two natural hills and the results are compared with other flow solvers. The practical purpose of the report is to document the creation of inflow boundary conditions of fully developed turbulent flows for other LES calculations where the role of inflow turbulence is critical.

More Details

Predicting large-scale pool fire dynamics using an unsteady flamelet- And large-eddy simulation-based model suite

Physics of Fluids

Domino, Stefan P.; Hewson, John C.; Knaus, Robert C.; Hansen, Michael A.

A low-Mach, unstructured, large-eddy-simulation-based, unsteady flamelet approach with a generalized heat loss combustion methodology (including soot generation and consumption mechanisms) is deployed to support a large-scale, quiescent, 5-m JP-8 pool fire validation study. The quiescent pool fire validation study deploys solution sensitivity procedures, i.e., the effect of mesh and time step refinement on capturing key fire dynamics such as fingering and puffing, as mesh resolutions approach O(1) cm. A novel design-order, discrete-ordinate-method discretization methodology is established by use of an analytical thermal/participating media radiation solution on both low-order hexahedral and tetrahedral mesh topologies in addition to quadratic hexahedral elements. The coupling between heat losses and the flamelet thermochemical state is achieved by augmenting the unsteady flamelet equation set with a heat loss source term. Soot and radiation source terms are determined using flamelet approaches for the full range of heat losses experienced in fire applications including radiative extinction. The proposed modeling and simulation paradigm are validated using pool surface radiative heat flux, maximum centerline temperature location, and puffing frequency data, all of which are predicted within 10% accuracy. Simulations demonstrate that under-resolved meshes predict an overly conservative radiative heat flux magnitude with improved comparisons as compared to a previously deployed hybrid Reynolds-averaged Navier-Stokes/eddy dissipation concept-based methodology.

More Details

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, Michael S.; Ananthan, Shreyas A.; Binyahib, Roba B.; Brazell, Michael B.; de Frahan, Marc H.; King, Ryan N.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Dement, David C.; deVelder, Nathaniel d.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Matula, Neil M.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, William J.; Prokopenko, Andrey P.; Wilson, Robert V.; Moser, &.; Melvin, Jeremy M.; Sitaraman, &.

Abstract not provided.

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, M.S.; Ananthan, S.A.; Brazell, M.x.; Glaws, A.G.; De Frahan, M.D.; King, R.K.; Natarajan, M.N.; Rood, J.R.; Sharma, A.L.; Sirydowicz, K.S.; S., Thomas S.; Vijaykumar, G.V.; Yellapantula, S.Y.; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, J.H.; Prokopenko, A.P.; Wilson, R.W.; Moser, R.M.; Melvin, J.M.; Sitaraman, J S.

Abstract not provided.

Comparison of field measurements and large eddy simulations of the scaled wind farm technology (SWIFT) site

ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019

Blaylock, Myra L.; Houchens, Brent C.; Maniaci, David C.; Herges, Thomas H.; Hsieh, Alan H.; Knaus, Robert C.; Sakievich, Philip S.

Power production of the turbines at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at the Texas Tech University’s National Wind Institute Research Center was measured experimentally and simulated for neutral atmospheric boundary layer operating conditions. Two V27 wind turbines were aligned in series with the dominant wind direction, and the upwind turbine was yawed to investigate the impact of wake steering on the downwind turbine. Two conditions were investigated, including that of the leading turbine operating alone and both turbines operating in series. The field measurements include meteorological evaluation tower (MET) data and light detection and ranging (lidar) data. Computations were performed by coupling large eddy simulations (LES) in the three-dimensional, transient code Nalu-Wind with engineering actuator line models of the turbines from OpenFAST. The simulations consist of a coarse precursor without the turbines to set up an atmospheric boundary layer inflow followed by a simulation with refinement near the turbines. Good agreement between simulations and field data are shown. These results demonstrate that Nalu-Wind holds the promise for the prediction of wind plant power and loads for a range of yaw conditions.

More Details

Aerodynamic Drag Scoping Work

Voskuilen, Tyler V.; Erickson, Lindsay C.; Knaus, Robert C.

This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

More Details

Deploy production sliding mesh capability with linear solver benchmarking

Domino, Stefan P.; Barone, Matthew F.; Williams, Alan B.; Knaus, Robert C.

Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating ow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with \setup-up" costs can increase to nearly 50% of overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra- Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again suggests work to be done in the setup events associated with the linear system. In order to mitigate these initialization costs, several application paths have been explored, all of which are designed to reduce the frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure that full Jacobians are included is developed with results suggesting that this methodology is useful in decreasing reinitialization events without loss of matrix contributions. With the above foundational advances in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm physics such as turbine/turbine wake interactions.

More Details

LES soot-radiation predictions of buoyant fire plumes

2018 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2018

Koo, Heeseok K.; Hewson, John C.; Knaus, Robert C.

This study addresses predicting the internal thermochemical state in buoyant fire plumes using largeeddy simulations (LES) with a tabular flamelet library for the underlying flame chemistry. Buoyant fire plumes are characterized by moderate turbulent mixing, soot growth and oxidation and radiation transport. Soot moments, mixture fraction and enthalpy evolve in the LES with soot source terms given by the non-adiabatic flamelet library. Participating media radiation transport is predicted using the discrete ordinates method with source terms also from the flamelet library, and the LES subgrid-scale modeling is based on a one-equation kinetic-energy sub-filter model. This library is generated with flamelet states that include unsteady heat loss through extinction nominally representing radiative quenching. We describe the performance of this model both in the context of a laminar coflow configuration where extensive measurements are available and in buoyant turbulent fire plumes where measurements are more global.

More Details

Deploy Nalu/Kokkos algorithmic infrastructure with performance benchmarking

Domino, Stefan P.; Williams, Alan B.; Knaus, Robert C.

The former Nalu interior heterogeneous algorithm design, which was originally designed to manage matrix assembly operations over all elemental topology types, has been modified to operate over homogeneous collections of mesh entities. This newly templated kernel design allows for removal of workset variable resize operations that were formerly required at each loop over a Sierra ToolKit (STK) bucket (nominally, 512 entities in size). Extensive usage of the Standard Template Library (STL) std::vector has been removed in favor of intrinsic Kokkos memory views. In this milestone effort, the transition to Kokkos as the underlying infrastructure to support performance and portability on many-core architectures has been deployed for key matrix algorithmic kernels. A unit-test driven design effort has developed a homogeneous entity algorithm that employs a team-based thread parallelism construct. The STK Single Instruction Multiple Data (SIMD) infrastructure is used to interleave data for improved vectorization. The collective algorithm design, which allows for concurrent threading and SIMD management, has been deployed for the core low-Mach element- based algorithm. Several tests to ascertain SIMD performance on Intel KNL and Haswell architectures have been carried out. The performance test matrix includes evaluation of both low- and higher-order methods. The higher-order low-Mach methodology builds on polynomial promotion of the core low-order control volume nite element method (CVFEM). Performance testing of the Kokkos-view/SIMD design indicates low-order matrix assembly kernel speed-up ranging between two and four times depending on mesh loading and node count. Better speedups are observed for higher-order meshes (currently only P=2 has been tested) especially on KNL. The increased workload per element on higher-order meshes bene ts from the wide SIMD width on KNL machines. Combining multiple threads with SIMD on KNL achieves a 4.6x speedup over the baseline, with assembly timings faster than that observed on Haswell architecture. The computational workload of higher-order meshes, therefore, seems ideally suited for the many-core architecture and justi es further exploration of higher-order on NGP platforms. A Trilinos/Tpetra-based multi-threaded GMRES preconditioned by symmetric Gauss Seidel (SGS) represents the core solver infrastructure for the low-Mach advection/diffusion implicit solves. The threaded solver stack has been tested on small problems on NREL's Peregrine system using the newly developed and deployed Kokkos-view/SIMD kernels. fforts are underway to deploy the Tpetra-based solver stack on NERSC Cori system to benchmark its performance at scale on KNL machines.

More Details

Final Report for ALCC Allocation: Predictive Simulation of Complex Flow in Wind Farms

Barone, Matthew F.; Ananthan, Shreyas A.; Churchfield, Matt C.; Domino, Stefan P.; Henry de Frahan, Marc T.; Knaus, Robert C.; Melvin, Jeremy M.; Moser, Robert M.; Sprague, Michael S.; Thomas, Stephen T.

This report documents work performed using ALCC computing resources granted under a proposal submitted in February 2016, with the resource allocation period spanning the period July 2016 through June 2017. The award allocation was 10.7 million processor-hours at the National Energy Research Scientific Computing Center. The simulations performed were in support of two projects: the Atmosphere to Electrons (A2e) project, supported by the DOE EERE office; and the Exascale Computing Project (ECP), supported by the DOE Office of Science. The project team for both efforts consists of staff scientists and postdocs from Sandia National Laboratories and the National Renewable Energy Laboratory. At the heart of these projects is the open-source computational-fluid-dynamics (CFD) code, Nalu. Nalu solves the low-Mach-number Navier-Stokes equations using an unstructured- grid discretization. Nalu leverages the open-source Trilinos solver library and the Sierra Toolkit (STK) for parallelization and I/O. This report documents baseline computational performance of the Nalu code on problems of direct relevance to the wind plant physics application - namely, Large Eddy Simulation (LES) of an atmospheric boundary layer (ABL) flow and wall-modeled LES of a flow past a static wind turbine rotor blade. Parallel performance of Nalu and its constituent solver routines residing in the Trilinos library has been assessed previously under various campaigns. However, both Nalu and Trilinos have been, and remain, in active development and resources have not been available previously to rigorously track code performance over time. With the initiation of the ECP, it is important to establish and document baseline code performance on the problems of interest. This will allow the project team to identify and target any deficiencies in performance, as well as highlight any performance bottlenecks as we exercise the code on a greater variety of platforms and at larger scales. The current study is rather modest in scale, examining performance on problem sizes of O(100 million) elements and core counts up to 8k cores. This will be expanded as more computational resources become available to the projects.

More Details

Model sensitivities in LES predictions of buoyant methane fire plumes

2017 Fall Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2017

Koo, Heeseok K.; Hewson, John C.; Domino, Stefan P.; Knaus, Robert C.

A 1-m diameter methane fire plume has been studied using a large eddy simulation (LES) methodology. Eddy dissipation concept (EDC) and steady flamelet combustion models were used to describe interactions between buoyancy-induced turbulence and gas-phase combustion. Detailed comparisons with experimental data showed that the simulation is sensitive to the combustion model and mesh resolution. In particular, any excessive mixing results in a wider and more diffusive plume. As mesh resolution increases, the current simulations demonstrate a tendency toward excessive mixing.

More Details

Stochastic modeling of unsteady extinction in turbulent non-premixed combustion

Proceedings of the Combustion Institute

Lackmann, T.; Hewson, John C.; Knaus, Robert C.; Kerstein, A.R.; Oevermann, M.

Turbulent fluctuations of the scalar dissipation rate have a major impact on extinction in non-premixed combustion. Recently, an unsteady extinction criterion has been developed (Hewson, 2013) that predicts extinction dependent on the duration and the magnitude of dissipation rate fluctuations exceeding a critical quenching value; this quantity is referred to as the dissipation impulse. The magnitude of the dissipation impulse corresponding to unsteady extinction is related to the difficulty with which a flamelet is exintguished, based on the steady-state S-curve. In this paper we evaluate this new extinction criterion for more realistic dissipation rates by evolving a stochastic Ornstein-Uhlenbeck process for the dissipation rate. A comparison between unsteady flamelet evolution using this dissipation rate and the extinction criterion exhibit good agreement. The rate of predicted extinction is examined over a range of Damköhler and Reynolds numbers and over a range of the extinction difficulty. The results suggest that the rate of extinction is proportional to the average dissipation rate and the area under the dissipation rate probability density function exceeding the steady-state quenching value. It is also inversely related to the actual probability that this steady-state quenching dissipation rate is observed and the difficulty of extinction associated with the distance between the upper and middle branches of the S-curve.

More Details
40 Results
40 Results