Publications

Results 1–200 of 283
Skip to search filters

System Integration Analysis for Modular Solid-State Substations

Mueller, Jacob M.; Kaplar, Robert K.; Flicker, Jack D.; Garcia Rodriguez, Luciano A.; Binder, Andrew B.; Ropp, Michael E.; Gill, Lee G.; Palacios, Felipe N.; Rashkin, Lee; Dow, Andrew R.; Elliott, Ryan T.

Structural modularity is critical to solid-state transformer (SST) and solid-state power substation (SSPS) concepts, but operational aspects related to this modularity are not yet fully understood. Previous studies and demonstrations of modular power conversion systems assume identical module compositions, but dependence on module uniformity undercuts the value of the modular framework. In this project, a hierarchical control approach was developed for modular SSTs which achieves system-level objectives while ensuring equitable power sharing between nonuniform building block modules. This enables module replacements and upgrades which leverage circuit and device technology advancements to improve system-level performance. The functionality of the control approach is demonstrated in detailed time-domain simulations. Results of this project provide context and strategic direction for future LDRD projects focusing on technologies supporting the SST crosscut outcome of the resilient energy systems mission campaign.

More Details

Demonstration of >6.0-kV Breakdown Voltage in Large Area Vertical GaN p-n Diodes With Step-Etched Junction Termination Extensions

IEEE Transactions on Electron Devices

Yates, Luke Y.; Gunning, Brendan P.; Crawford, Mary H.; Steinfeldt, Jeffrey A.; Smith, Michael; Abate, Vincent M.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Binder, Andrew B.; Allerman, A.A.; Kaplar, Robert K.

Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ$\cdot$cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 mΩ$\cdot$cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. In this work, these results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of <1×1015 cm–3 and a carefully designed four-zone junction termination extension.

More Details

A discussion on various experimental methods of impact ionization coefficient measurement in GaN

AIP Advances

Ji, Dong; Zeng, Ke; Bian, Zhengliang; Shankar, Bhawani; Gunning, Brendan P.; Binder, Andrew B.; Dickerson, Jeramy R.; Aktas, Ozgur; Anderson, Travis J.; Kaplar, Robert K.; Chowdhury, Srabanti

Impact ionization coefficients play a critical role in semiconductors. In addition to silicon, silicon carbide and gallium nitride are important semiconductors that are being seen more as mainstream semiconductor technologies. As a reflection of the maturity of these semiconductors, predictive modeling has become essential to device and circuit designers, and impact ionization coefficients play a key role here. Recently, several studies have measured impact ionization coefficients. We dedicated the first part of our study to comparing three experimental methods to estimate impact ionization coefficients in GaN, which are all based on photomultiplication but feature characteristic differences. The first method inserts an InGaN hole-injection layer, the accuracy of which is challenged by the dominance of ionization in InGaN, leading to possible overestimation of the coefficients. The second method utilizes the Franz-Keldysh effect for hole injection but not for electrons, where the mixed injection of induced carriers would require a margin of error. The third method uses complementary p-n and n-p structures that have been at the basis of this estimation in Si and SiC and leans on the assumption of a constant electric field, and any deviation would require a margin of error. In the second part of our study, we evaluated the models using recent experimental data from diodes demonstrating avalanche breakdown.

More Details

Analysis of the dependence of critical electric field on semiconductor bandgap

Journal of Materials Research

Slobodyan, Oleksiy; Flicker, Jack D.; Dickerson, Jeramy R.; Shoemaker, Jonah; Binder, Andrew B.; Smith, Trevor S.; Goodnick, Stephen; Kaplar, Robert K.; Hollis, Mark

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

More Details

Identification of the defect dominating high temperature reverse leakage current in vertical GaN power diodes through deep level transient spectroscopy

Applied Physics Letters

DasGupta, Sandeepan D.; Slobodyan, O.S.; Smith, Trevor S.; Binder, Andrew B.; Flicker, Jack D.; Kaplar, Robert K.; Mueller, Jacob M.; Garcia Rodriguez, Luciano A.; Atcitty, Stanley A.

Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. Here, we use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ~ 1500 V. DLTS reveals three energy levels that are at ~0.6 eV (highest density), ~0.27 eV (lowest density), and ~45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance–voltage measurement tests (C–V) at multiple temperatures enables trap density evaluation, and the ~0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

More Details

Ultrawide-bandgap semiconductors: An overview

Journal of Materials Research

Wong, Man H.; Bierwagen, Oliver; Kaplar, Robert K.; Umezawa, Hitoshi

Ultrawide-bandgap (UWBG) semiconductor technology is presently going through a renaissance exemplified by advances in material-level understanding, extensions of known concepts to new materials, novel device concepts, and new applications. This focus issue presents a timely selection of papers spanning the current state of the art in UWBG materials and applications, including both experimental results and theoretical developments. It covers broad research subtopics on UWBG bulk crystals and substrate technologies, UWBG defect science and doping, UWBG epitaxy, UWBG electronic and optoelectronic properties, and UWBG power devices and emitters. In this overview article, we consolidate the fundamentals and background of key UWBG semiconductors including aluminum gallium nitride alloys (AlxGa1–xN), boron nitride (BN), diamond, β-phase gallium oxide (β-Ga2O3), and a number of other UWBG binary and ternary oxides. Graphical Abstract: [Figure not available: see fulltext.]

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert K.; Binder, Andrew B.; Yates, Luke Y.; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley A.; Abate, Vincent M.; Pickrell, Gregory P.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Monson, Todd M.; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan A.; Cooper, James A.

Abstract not provided.

Vertical GaN PN Diodes for Grid Resiliency and Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Vertical GaN Devices for Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory P.; Dickerson, Jeramy R.; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth A.; Baca, Albert G.; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed R.; Binder, Andrew B.; Yates, Luke Y.; Slobodyan, Oleksiy S.; Sharps, Paul; Simmons, Jerry S.; Tsao, Jeffrey Y.; Hollis, Mark A.; Johnson, Noble J.; Jones, Ken J.; Pavlidis, Dimitris P.; Goretta, Ken G.; Nemanich, Bob N.; Goodnick, Steve G.; Chowdhury, Srabanti C.

Abstract not provided.

AlGaN High Electron Mobility Transistor for Power Switches and High Temperature Logic

Klein, Brianna A.; Armstrong, Andrew A.; Allerman, A.A.; Nordquist, Christopher N.; Neely, Jason C.; Reza, Shahed R.; Douglas, Erica A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Matins, Benjamin M.; Fortune, Torben R.; Rosprim, Mary R.; Caravello, Lisa N.; DeBerry, Rebecca N.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Abstract not provided.

Vertical GaN Power Electronics - Opportunities and Challenges (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, L.G.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; M., Porter M.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Analysis of ALD Dielectric Leakage in Bulk GaN MOS Devices

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Glaser, Caleb E.; Binder, Andrew T.; Yates, Luke Y.; Allerman, A.A.; Feezell, Daniel F.; Kaplar, Robert K.

This study analyzes the ability of various processing techniques to reduce leakage current in vertical GaN MOS devices. Careful analysis is required to determine suitable gate dielectric materials in vertical GaN MOSFET devices since they are largely responsible for determination of threshold voltage, gate leakage reduction, and semiconductor/dielectric interface traps. SiO2, Al2 O3, and HfO2 films were deposited by Atomic Layer Deposition (ALD) and subjected to treatments nominally identical to those in a vertical GaN MOSFET fabrication sequence. This work determines mechanisms for reducing gate leakage by reduction of surface contaminants and interface traps using pre-deposition cleans, elevated temperature depositions, and post-deposition anneals. Breakdown measurements indicate that ALD Al2O3 is an ideal candidate for a MOSFET gate dielectric, with a breakdown electric field near 7.5 MV/cm with no high temperature annealing required to increase breakdown strength. SiO2 ALD films treated with a post deposition anneal at 850 °C for 30 minutes show significant reduction in leakage current while maintaining breakdown at 5.5 MV/cm. HfO2 films show breakdown nominally identical to annealed SiO2 films, but with significantly higher leakage. Additionally, HfO2 films show more sensitivity to high temperature annealing suggesting that more research into surface cleans is necessary to improving these films for MOSFET gate applications.

More Details

High-Al-content heterostructures and devices

Semiconductors and Semimetals

Kaplar, Robert K.; Baca, A.G.; Douglas, Erica A.; Klein, Brianna A.; Allerman, A.A.; Crawford, Mary H.; Reza, Shahed R.

Ultra-wide-bandgap aluminum gallium nitride (AlGaN) possesses several material properties that make it attractive for use in a variety of applications. This chapter focuses on power switching and radio-frequency (RF) devices based on Al-rich AlGaN heterostructures. The relevant figures of merit for both power switching and RF devices are discussed as motivation for the use of AlGaN heterostructures in such applications. The key physical parameters impacting these figures of merit include critical electric field, channel mobility, channel carrier density, and carrier saturation velocity, and the factors influencing these and the trade-offs between them are discussed. Surveys of both power switching and RF devices are given and their performance is described including in special operating regimes such as at high temperatures. Challenges to be overcome, such as the formation of low-resistivity Ohmic contacts, are presented. Finally, an overview of processing-related challenges, especially related to surfaces and interfaces, concludes the chapter.

More Details

Etched and Regrown Vertical GaN Junction Barrier Schottky Diodes

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Binder, Andrew B.; Pickrell, Gregory P.; Allerman, A.A.; Dickerson, Jeramy R.; Yates, Luke Y.; Steinfeldt, Jeffrey A.; Glaser, Caleb E.; Crawford, Mary H.; Armstrong, Andrew A.; Sharps, Paul; Kaplar, Robert K.

This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Parter, M.P.; Zeng, K.Z.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

A Study on the Impact of Mid-Gap Defects on Vertical GaN Diodes

IEEE Transactions on Semiconductor Manufacturing

Ebrish, Mona A.; Anderson, Travis J.; Koehler, Andrew D.; Foster, Geoffrey M.; Gallagher, James C.; Kaplar, Robert K.; Gunning, Brendan P.; Hobart, Karl D.

GaN is a favorable martial for future efficient high voltage power switches. GaN has not dominated the power electronics market due to immature substrate, homoepitaxial growth, and immature processing technology. Understanding the impact of the substrate and homoepitaxial growth on the device performance is crucial for boosting the performance of GaN. In this work, we studied vertical GaN PiN diodes that were fabricated on non-homogenous Hydride Vapor Phase Epitaxy (HVPE) substrates from two different vendors. We show that defects which stemmed from growth techniques manifest themselves as leakage hubs. Different non-homogenous substrates showed different distribution of those defects spatially with the lesser quality substrates clustering those defects in clusters that causes pre-mature breakdown. Energetically these defects are mostly mid-gap around 1.8Ev with light emission spans from 450nm to 700nm. Photon emission spectrometry and hyperspectral electroluminescence were used to locate these defects spatially and energetically.

More Details

Co-Optimization of Boost Converter Reliability and Volumetric Power Density [Brief]

Gill, Lee G.; Neely, Jason C.; Rashkin, Lee; Flicker, Jack D.; Kaplar, Robert K.

Optimized designs were achieved using a genetic algorithm to evaluate multi-objective trade space, including Mean-Time-Between-Failure (MTBF) and volumetric power density. This work provides a foundational platform that can be used to optimize additional power converters, such as an inverter for the EV traction drive system as well as trade-offs in thermal management due to the use of different device substrate materials.

More Details

Device-Level Multidimensional Thermal Dynamics with Implications for Current and Future Wide Bandgap Electronics

Journal of Electronic Packaging, Transactions of the ASME

Lundh, James S.; Song, Yiwen; Chatterjee, Bikramjit; Baca, A.G.; Kaplar, Robert K.; Armstrong, Andrew A.; Allerman, A.A.; Klein, Brianna A.; Kendig, Dustin; Kim, Hyungtak; Choi, Sukwon

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Simulation and Design of Step-Etched Junction Termination Extensions for GaN Power Diodes

4th Electron Devices Technology and Manufacturing Conference, EDTM 2020 - Proceedings

Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Gunning, Brendan P.; Kaplar, Robert K.

Proper edge termination is required to reach large blocking voltages in vertical power devices. Limitations in selective area p-type doping in GaN restrict the types of structures that can be used for this purpose. A junction termination extension (JTE) can be employed to reduce field crowding at the junction periphery where the charge in the JTE is designed to sink the critical electric field lines at breakdown. One practical way to fabricate this structure in GaN is by a step-etched single-zone or multi-zone JTE where the etch depths and doping levels are used to control the charge in the JTE. The multi-zone JTE is beneficial for increasing the process window and allowing for more variability in parameter changes while still maintaining a designed percentage of the ideal breakdown voltage. Impact ionization parameters reported in literature for GaN are compared in a simulation study to ascertain the dependence on breakdown performance. Two 3-zone JTE designs utilizing different impact ionization coefficients are compared. Simulations confirm that the choice of impact ionization parameters affects both the predicted breakdown of the device as well as the fabrication process variation tolerance for a multi-zone JTE. Regardless of the impact ionization coefficients utilized, a step-etched JTE has the potential to provide an efficient, controllable edge termination design.

More Details

High Temperature and Power Dependent Photoluminescence Analysis on Commercial Lighting and Display LED Materials for Future Power Electronic Modules

Scientific Reports

Sabbar, Abbas; Madhusoodhanan, Syam; Al-Kabi, Sattar; Dong, Binzhong; Wang, Jiangbo; Atcitty, Stanley A.; Kaplar, Robert K.; Ding, Ding; Mantooth, Alan; Yu, Shui Q.; Chen, Zhong

Commercial light emitting diode (LED) materials - blue (i.e., InGaN/GaN multiple quantum wells (MQWs) for display and lighting), green (i.e., InGaN/GaN MQWs for display), and red (i.e., Al0.05Ga0.45In0.5P/Al0.4Ga0.1In0.5P for display) are evaluated in range of temperature (77–800) K for future applications in high density power electronic modules. The spontaneous emission quantum efficiency (QE) of blue, green, and red LED materials with different wavelengths was calculated using photoluminescence (PL) spectroscopy. The spontaneous emission QE was obtained based on a known model so-called the ABC model. This model has been recently used extensively to calculate the internal quantum efficiency and its droop in the III-nitride LED. At 800 K, the spontaneous emission quantum efficiencies are around 40% for blue for lighting and blue for display LED materials, and it is about 44.5% for green for display LED materials. The spontaneous emission QE is approximately 30% for red for display LED material at 800 K. The advance reported in this paper evidences the possibility of improving high temperature optocouplers with an operating temperature of 500 K and above.

More Details

Bevel edge termination for vertical GaN power diodes

2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2019

Binder, Andrew B.; Dickerson, Jeramy R.; Crawford, Mary H.; Pickrell, Gregory P.; Allerman, A.A.; Sharps, Paul; Kaplar, Robert K.

Edge termination for vertical power devices presents a significant challenge, as improper termination can result in devices with a breakdown voltage significantly less than the ideal infinite-planar case. Edge termination for vertical GaN devices is particularly challenging due to limitations in ion implantation for GaN, and as such this work investigates a bevel edge termination technique that does not require implantation and has proven to be effective for Si and SiC power devices. However, due to key differences between GaN versus Si and SiC p-n junctions (specifically, a grown versus an implanted junction), this technology needs to be reevaluated for GaN. Simulation results suggest that by leveraging the effective bevel angle relationship, a 10-15° physical bevel angle can yield devices with 85-90% of the ideal breakdown voltage. Results are presented for a negative bevel edge termination on an ideally 2 kV vertical GaN p-n diode.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, A.G.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Wendt, J.R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert K.

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

Stability in Fluorine-Treated Al-Rich High Electron Mobility Transistors with 85% Al-Barrier Composition

IEEE International Reliability Physics Symposium Proceedings

Baca, A.G.; Klein, B.A.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Fortune, Torben R.; Kaplar, Robert K.

Combined with recess etching, Al-rich III-N high electron mobility transistors (HEMTs) can be treated with a reactive ion etch plasma to implant F- ions into the HEMT's near surface region for a positive threshold voltage $(V-{TH})$ shift to achieve enhancement-mode (e-mode) operation. These HEMTs, along with depletion-mode (d-mode) controls that lack fluorine treatment, were evaluated for F- ion stability using step-stress and fixed-bias stress experiments. Step-stress experiments identified parametric shifts as a function of the drain-voltage $(V-{DS})$ stress prior to catastrophic failure that occurred at ${\it V-{DS}}$ ranging between 70-75 V. Fixed bias stressing at $V-{DS}=50\mathrm{V}$ was conducted at $190\ ^{\circ}\mathrm{C}$ Both e- and d- mode HEMTs exhibited a negative $V-{TH}$ shift of $0.6-1.0 \mathrm{V}$ during early time stressing at 190°C, with minor on-resistance effects, but both HEMT types were thereafter stable up to 4 hours. The early time changes are common to both e-mode and d-mode HEMTs and the F-induced ${\it V-{TH}}$ delta between e- and d-mode HEMTs remains intact within the bias-temperature stressing conditions of this work.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, A.G.; Klein, Brianna A.; Wendt, J.R.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert K.

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

Integrated optical probing of the thermal dynamics of wide bandgap power electronics

ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2019

Lundh, James S.; Song, Yiwen; Chatterjee, Bikram; Baca, A.G.; Kaplar, Robert K.; Armstrong, Andrew A.; Allerman, A.A.; Kim, Hyungtak; Choi, Sukwon

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power (SWaP) of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current (DC) measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to sub-microsecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

More Details

Hard-switching reliability studies of 1200 v vertical GaN PiN diodes

MRS Communications

Slobodyan, Oleksiy S.; Smith, Trevor S.; Flicker, J.; Sandoval, S.; Matthews, C.; Van Heukelom, M.; Kaplar, Robert K.; Atcitty, S.

We report on reliability testing of vertical GaN (v-GaN) devices under continuous switching conditions of 500, 750, and 1000 V. Using a modified double-pulse test circuit, we evaluate 1200 V-rated v-GaN PiN diodes fabricated by Avogy. Forward current-voltage characteristics do not change over the stress period. Under the reverse bias, the devices exhibit an initial rise in leakage current, followed by a slower rate of increase with further stress. The leakage recovers after a day's relaxation which suggests that trapping of carriers in deep states is responsible. Overall, we found the devices to be robust over the range of conditions tested.

More Details

TCAD simulation of a 1 kV 10 A GaN MISFET Device

Dickerson, Jeramy R.; Dickerson, Jeramy R.; Dickerson, Jeramy R.; Dickerson, Jeramy R.; Kaplar, Robert K.; Kaplar, Robert K.; Kaplar, Robert K.; Kaplar, Robert K.; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Armstrong, Andrew A.; Armstrong, Andrew A.; Armstrong, Andrew A.; Armstrong, Andrew A.; Crawford, Mary H.; Crawford, Mary H.; Crawford, Mary H.; Crawford, Mary H.; Allerman, A.A.; Allerman, A.A.; Allerman, A.A.; Allerman, A.A.; Pickrell, Gregory P.; Pickrell, Gregory P.; Pickrell, Gregory P.; Pickrell, Gregory P.

Abstract not provided.

Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with Schottky Gates and Large On/Off Current Ratio over Temperature

ECS Journal of Solid State Science and Technology

Baca, A.G.; Klein, Brianna A.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Stephenson, Chad A.; Fortune, Torben R.; Kaplar, Robert K.

AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that are promising candidates for RF and power applications. Long-channel AlxGa1-xN HEMTs with x = 0.7 in the channel have been built and evaluated across the -50°C to +200°C temperature range. These devices achieved room temperature drain current as high as 46 mA/mm and were absent of gate leakage until the gate diode forward bias turn-on at ~2.8 V, with a modest -2.2 V threshold voltage. A very large Ion/Ioff current ratio, of 8 × 109 was demonstrated. A near ideal subthreshold slope that is just 35% higher than the theoretical limit across the temperature range was characterized. The ohmic contact characteristics were rectifying from -50°C to +50°C and became nearly linear at temperatures above 100°C. An activation energy of 0.55 eV dictates the temperature dependence of off-state leakage.

More Details

Prediction of Pareto-optimal performance improvements in a power conversion system using GaN devices

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Zhang, B.; Sudhoff, S.; Pekarek, S.; Swanson, R.; Flicker, Jack D.; Neely, J.; Delhotal, Jarod J.; Kaplar, Robert K.

Gallium Nitride (GaN) semiconductors have extremely low switching loss, high breakdown voltage, and high junction temperature rating. These characteristics enable improved device performance and thus improved switch mode power converter designs. This paper evaluates the Pareto-optimal performance improvements for a DC generation system with predicted GaN loss characteristics and a rigorous multi-objective optimization based design paradigm. The optimization results show that the application of GaN can achieve a 6.4% mass savings relative to Silicon Carbide (SiC) and 40% mass savings relative to Silicon (Si) at the same loss level for a 10 kW application.

More Details

Design optimization of GaN vertical power diodes and comparison to Si and SiC

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Flicker, Jack D.; Kaplar, Robert K.

In order to determine how material characteristics percolate up to system-level improvements in power dissipation for different material systems and device types, we have developed an optimization tool for power diodes. This tool minimizes power dissipation in a diode for a given system operational regime (reverse voltage, forward current density, frequency, duty cycle, and temperature) for a variety of device types and materials. We have carried out diode optimizations for a wide range of system operating points to determine the regimes for which certain power diode materials/devices are favored. In this work, we present results comparing state-of-the-art Si and SiC merged PiN Schottky (MPS) diodes to vertical GaN (v-GaN) PiN diodes and as-yet undeveloped v-GaN Schottky barrier diodes (SBDs). The results of this work show that for all conditions tested, SiC MPS and v-GaN PiN diodes are preferred over Si MPS diodes. v-GaN PiN diodes are preferred over SiC MPS diodes for high-voltage / moderate-frequency operation with the limits of the v-GaN PiN preferred regime, increasing with increasing forward current density. If a v-GaN SBD diode were available, it would be preferred over all other devices at low to moderate voltages, for all frequencies from 100 Hz to 1 MHz.

More Details

Ultrafast reverse recovery time measurement for wide-bandgap diodes

IEEE Transactions on Power Electronics

Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; King, Michael P.; Neely, Jason C.; Kizilyalli, Isik C.; Kaplar, Robert K.

A system is presented that is capable of measuring subnanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 - 1 A) and reverse voltages (0 - 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultrashort Pulse Laser, a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS-based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode, which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. This system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50-100 V and forward current of 1-100 mA.

More Details

Miniature high voltage, high temperature component package development

2016 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2016

Rashkin, Lee; Brocato, R.W.; Delhotal, Jarod J.; Neely, J.C.; Flicker, Jack D.; Fang, Lu F.; Kaplar, Robert K.

With the next generation of semiconductor materials in development, significant strides in the Size, Weight, and Power (SWaP) characteristics of power conversion systems are presently underway. In particular, much of the improvements in system-level efficiencies and power densities due to wide-bandgap (WBG) and ultra-wide-bandgap (UWBG) device incorporation are realized through higher voltage, higher frequency, and higher temperature operation. Concomitantly, there is a demand for ever smaller device footprints with high voltage, high power handling ability while maintaining ultra-low inductive/capacitive parasitics for high frequency operation. For our work, we are developing small size vertical gallium nitride (GaN) and aluminum gallium nitride (AlGaN) power diodes and transistors with breakdown and hold-off voltages as high as 15kV. The small size and high power densities of these devices create stringent requirements on both the size (balanced between larger sizing for increased voltage hold-off with smaller sizing for reduced parasitics) and heat dissipation capabilities of the associated packaging. To accommodate these requirements and to be able to characterize these novel device designs, we have developed specialized packages as well as test hardware and capabilities. This work describes the requirements of these new devices, the development of the high voltage, high power packages, and the high-voltage, high-Temperature test capabilities needed to characterize and use the completed components. In the course of this work, we have settled on a multi-step methodology for assessing the performance of these new power devices, which we also present.

More Details

Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; King, M.P.; Aktas, O.; Kizilyalli, I.C.; Kaplar, Robert K.

Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

More Details

Ohmic contacts to Al-rich AlGaN heterostructures

Physica Status Solidi (A) Applications and Materials Science

Douglas, Erica A.; Reza, Shahed R.; Sanchez, C.; Koleske, Daniel K.; Allerman, A.A.; Klein, B.; Armstrong, Andrew A.; Kaplar, Robert K.; Baca, A.G.

Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.

More Details

Imaging the impact of proton irradiation on edge terminations in vertical GaN PIN diodes

IEEE Electron Device Letters

Collins, K.C.; King, M.P.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, Robert K.; Aktas, O.; Kizilyalli, I.C.; Talin, A.A.; Léonard, F.

Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination tomitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN PIN diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.

More Details

Analysis of 2D transport and performance characteristics for lateral power devices based on AlGaN alloys

ECS Journal of Solid State Science and Technology

Coltrin, Michael E.; Baca, A.G.; Kaplar, Robert K.

Predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet charge density of 1 × 1013 cm−2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.

More Details

Review - Ultra-wide-bandgap AlGaN power electronic devices

ECS Journal of Solid State Science and Technology

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Dickerson, Jeramy R.; Fischer, Arthur J.; Baca, A.G.; Douglas, Erica A.

"Ultra" wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG >3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludes with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.

More Details

Module-level paralleling of vertical GaN PiN diodes

WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications

Flicker, Jack D.; Brocato, Robert W.; Delhotal, Jarod J.; Neely, Jason; Sumner, Bjorn; Dickerson, Jeramy R.; Kaplar, Robert K.

The effects of paralleling low-current vertical Gallium Nitride (v-GaN) diodes in a custom power module are reported. Four paralleled v-GaN diodes were demonstrated to operate in a buck converter at 1.3 Apeak (792 mArms) at 240 V and 15 kHz switching frequency. Additionally, high-fidelity SPICE simulations demonstrate the effects of device parameter variation on power sharing in a power module. The device parameters studied were found to have a sub-linear relationship with power sharing, indicating a relaxed need to bin parts for paralleling. This result is very encouraging for power electronics based on low-current v-GaN and demonstrates its potential for use in high-power systems.

More Details

Switching characterization of vertical GaN PiN diodes

WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications

Matthews, C.; Flicker, Jack D.; Kaplar, Robert K.; Van Heukelom, Michael V.; Atcitty, Stanley A.; Kizilyalli, I.C.; Aktas, O.

The switching characteristics of vertical Gallium Nitride (v-GaN) diodes grown on GaN substrates are reported. v-GaN diodes were tested in a Double-Pulse Test Circuit (DPTC) and compared to test results for SiC Schottky Barrier Diodes (SBDs) and Si PiN diodes. The reported switching characteristics show that GaN diodes, like SiC SBDs, exhibit nearly negligible reverse recovery current compared to traditional Si PiN diodes. The reverse recovery for the v-GaN PiN diodes is limited by parasitics in the DPTC, precluding extraction of a meaningful recovery time. These results are very encouraging for power electronics based on v-GaN and demonstrate the potential for very fast, low-loss switching for these devices.

More Details

Inductively coupled BCl3/Cl2 /Ar plasma etching of Al-rich AlGaN

Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films

Douglas, Erica A.; Sanchez, Carlos A.; Kaplar, Robert K.; Allerman, A.A.; Baca, A.G.

Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects of small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.

More Details

Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

Applied Physics Letters

King, M.P.; Kaplar, Robert K.; Dickerson, Jeramy R.; Lee, Stephen R.; Allerman, A.A.; Crawford, Mary H.; Fischer, A.J.; Marinella, M.J.; Flicker, Jack D.; Fleming, Robert M.; Kizilyalli, I.C.; Aktas, O.; Armstrong, Andrew A.

Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (∼104 - 106cm-2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014cm-3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Thus, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

More Details

An AlN/Al0.85Ga0.15N high electron mobility transistor

Applied Physics Letters

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert K.

An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion, the room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

More Details

Al00.3Ga0.7N PN diode with breakdown voltage >1600 V

Electronics Letters

Allerman, A.A.; Armstrong, Andrew A.; Fischer, Arthur J.; Dickerson, Jeramy R.; Crawford, Mary H.; King, Michael P.; Moseley, Michael; Wierer, J.Jr.; Kaplar, Robert K.

Demonstration of Al00.3Ga0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm2 is limited by the lateral conductivity of the n-type contact layer required by the front-surface contact geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (Vbr2/Rspec,on) of 150 MW/cm2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.

More Details

High voltage and high current density vertical GaN power diodes

Electronics Letters

Armstrong, Andrew A.; Allerman, A.A.; Fischer, Arthur J.; King, M.P.; Van Heukelom, Michael V.; Moseley, M.W.; Kaplar, Robert K.; Wierer, J.J.; Crawford, Mary H.; Dickerson, Jeramy R.

The realisation of a GaN high voltage vertical p-n diode operating at >3.9 kV breakdown with a specific on-resistance <0.9 mΩ cm2 is reported. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density >1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. This suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

More Details

Ultra-Wide-Bandgap Semiconductors for Generation-After-Next Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Fischer, Arthur J.; Dickerson, Jeramy R.; King, Michael P.; Baca, A.G.; Douglas, Erica A.; Sanchez, Carlos A.; Neely, Jason C.; Flicker, Jack D.; Zutavern, Fred J.; Mauch, Daniel L.; Brocato, Robert W.; Rashkin, Lee; Delhotal, Jarod J.; Fang, Lu F.; Kizilyalli, Isik C.; Aktas, Ozgur A.

Abstract not provided.

Reliability of power conversion systems in photovoltaic applications

Reliability of Power Electronic Converter Systems

Flicker, Jack D.; Kaplar, Robert K.

A photovoltaic (PV) inverter is a balance-of-systems (i.e., every component except for the module component whose purpose is to control and convert power flow through the PV system). Namely, the inverter transforms the nominal DC power produced by the PV module to AC power, which can be transported through the electrical power grid or used on-site by various power-consuming units (Figure 14.1). As the interface between the DC and AC sides of the system, the inverter must meet rather stringent requirements for both.

More Details

Vertical GaN power diodes with a bilayer edge termination

IEEE Transactions on Electron Devices

Dickerson, Jeramy R.; Allerman, A.A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael; Armstrong, Andrew A.; Kaplar, Robert K.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jonathan J.

Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. Simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

More Details

Performance and Breakdown Characteristics of Irradiated Vertical Power GaN P-i-N Diodes

IEEE Transactions on Nuclear Science

King, M.P.; Armstrong, Andrew A.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Fleming, Robert M.; Campbell, Jonathan C.; Wampler, W.R.; Kizilyalli, I.C.; Bour, D.P.; Aktas, O.; Nie, H.; DIsney, D.; Wierer, J.; Allerman, A.A.; Moseley, M.W.; Leonard, F.; Talin, A.A.; Kaplar, Robert K.

Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence < {10{13}} hbox{cm}-2. The unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

More Details
Results 1–200 of 283
Results 1–200 of 283