Publications

18 Results
Skip to search filters

Experimental Results from the 1.2 ma, 2.2 m Diameter Linear Transformer Driver at Sandia National Labs

IEEE International Pulsed Power Conference

Douglass, Jonathan D.; Cuneo, M.E.; Jaramillo, Deanna M.; Johns, Owen J.; Jones, M.C.; Lucero, Diego J.; Moore, James M.; Sceiford, Matthew S.; Kiefer, Mark L.; Mulville, Thomas D.; Sullivan, Michael A.; Hutsel, Brian T.; Hohlfelder, Robert J.; Leckbee, J.J.; Stoltzfus, B.S.; Wisher, M.L.; Savage, Mark E.; Stygar, W.A.; Breden, E.W.; Calhoun, Jacob D.

Herein we describe the design, simulation and performance of a 118-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 to 24 'Bricks'. Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bi-polar charged to a total of 200 kV. Typical brick circuit parameters are 40 nF (two 80 nF capacitors in series) and 160 nH inductance. Over the course of over 10,000 shots the cavity generated a peak electrical current and power of 1.19 MA and 118 GW.

More Details

100 GW linear transformer driver cavity: Design, simulations, and performance

Physical Review Accelerators and Beams

Douglass, Jonathan D.; Hutsel, Brian T.; Leckbee, Joshua L.; Mulville, Thomas D.; Stoltzfus, Brian S.; Savage, Mark E.; Breden, E.W.; Calhoun, Jacob D.; Cuneo, M.E.; De Smet, Dennis J.; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen J.; Lombrozo, Aaron C.; Lucero, Diego J.; Moore, James M.; Porter, John L.; Radovich, S.; Sceiford, Matthew S.; Sullivan, Michael A.; Walker, Charles A.; Yazzie, Nicole T.

Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

Wisher, Matthew L.; Johns, Owen J.; Breden, E.W.; Calhoun, Jacob D.; Gruner, Frederick R.; Hohlfelder, Robert J.; Mulville, Thomas D.; Muron, David J.; Stoltzfus, Brian S.; Stygar, William A.

We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electrical and operational performance of next-generation pulsed-power accelerators.

More Details

X-ray power and yield measurements at the refurbished Z machine

Review of Scientific Instruments

Jones, Brent M.; Ampleford, David A.; Cuneo, M.E.; Hohlfelder, Robert J.; Jennings, C.A.; Johnson, Drew J.; Jones, Brent M.; Lopez, M.R.; Macarthur, J.; Mills, Jerry A.; Preston, T.; Rochau, G.A.; Savage, Mark E.; Spencer, D.; Sinars, Daniel S.; Porter, J.L.

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources. © 2014 AIP Publishing LLC.

More Details

On identifying the specular reflection of sunlight in earth-monitoring satellite data

Jackson, Dale C.; Hohlfelder, Robert J.; Longenbaugh, Randolph S.; Nelsen, James M.

Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

More Details

High energy X-ray imaging diagnostics of nanosecond pulse accelerators

Proceedings of SPIE - The International Society for Optical Engineering

Smith, Graham W.; Hohlfelder, Robert J.; Tribe, Alun J.; Beutler, David E.; Gallegos, Roque R.; Seymour, Calvin L.G.; Thompson, Jon A.

X-ray imaging has been undertaken on Sandia National Laboratories' radiation effects x-ray simulators. These simulators typically yield a single very short (<20ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad (Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.5 to 1.8MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and an evaluation of the capability of the spectrometer are presented. © British Crown Copyright 2006/MOD.

More Details

Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

Hohlfelder, Robert J.; Beutler, David E.; Gallegos, Roque R.

Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

More Details

Amorphous Diamond MEMS and Sensors

Sullivan, John P.; Friedmann, Thomas A.; Ashby, Carol I.; De Boer, Maarten P.; Schubert, William K.; Shul, Randy J.; Hohlfelder, Robert J.

This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.

More Details
18 Results
18 Results