Publications

11 Results
Skip to search filters

Considerations for improvements to the 25 TW Saturn high-current driver

IEEE International Pulsed Power Conference

Savage, Mark E.; Struve, Kenneth W.; Austin, Kevin N.; Coffey, S.K.; Jones, Peter A.; Joseph, Nathan R.; Kirschner, Debra S.; Lott, John A.; Oliver, Bryan V.; Spielman, Rick B.

The Saturn X-ray generator is a 2.5 megavolt, 10 megampere electrical driver at Sandia National Laboratories. Saturn has been in operation for more than 30 years. Work is underway to identify key areas of the machine, improvement of which would benefit operational efficiency and reproducibility of the system. Saturn is used to create high-dose, short-pulse intense ionizing radiation environments for testing electronic and mechanical systems. Saturn has 36 identical modules driving a common electron beam bremsstrahlung load. Each module utilizes a microsecond Marx generator, a megavolt gas switch, and untriggered water switches in a largely conventional pulse-forming system. Achieving predictable and reliable radiation exposure is critical for users of the facility. Saturn has endured decades of continual use with minimal opportunities for research, improvements, or significant preventive maintenance. Because of degradation in components and limited attention to electrical performance, the facility has declined both in the number of useful tests per year and their repeatability. The Saturn system resides in a cylindrical tank 33m in diameter, and stores 5.6 MJ at the nominal operating Marx charge voltage. The system today is essentially identical to that described by Bloomquist in 1987. [1] Advances in technology for large pulsed power systems affords opportunities to improve the performance and more efficiently utilize the energy stored. Increased efficiency can improve reliability and reduce maintenance. The goals for the Saturn improvement work are increased shot rate, reduced X-ray dose shot-To-shot dose fluctuation, and reduced required maintenance. Major redesign with alternate pulsed power technology is considered outside the scope of this effort. More X-ray dose, larger exposure area, and lower X-ray endpoint energy are also important considerations but also deemed outside the scope of the present project due to schedule and resource constraints. The first considerations, described here, are improving the present design with better components.

More Details

Z-pinch current-scaling experiments at 10[7] amps

Proposed for publication in Physical Review E.

Stygar, William A.; Matzen, M.K.; Mazarakis, Michael G.; McDaniel, Dillon H.; McGurn, John S.; Mckenney, John M.; Mix, L.P.; Muron, David J.; Ramirez, Juan J.; Ruggles, Larry R.; Stygar, William A.; Seamen, Johann F.; Simpson, Walter W.; Speas, Christopher S.; Spielman, Rick B.; Struve, Kenneth W.; Vesey, Roger A.; Wagoner, Tim C.; Gilliland, Terrance L.; Bennett, Guy R.; Ives, Harry C.; Jobe, Daniel O.; Lazier, Steven E.; Mills, Jerry A.; Mulville, Thomas D.; Pyle, John H.; Romero, Tobias M.; Seamen, Johann F.; Serrano, Jason D.; Smelser, Ruth S.; Fehl, David L.; Cuneo, M.E.; Bailey, James E.; Bliss, David E.; Chandler, Gordon A.; Leeper, Ramon J.

Abstract not provided.

Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

Physics of Plasmas

Cuneo, M.E.; Vesey, Roger A.; Porter, John L.; Chandler, Gordon A.; Fehl, David L.; Gilliland, Terrance L.; Hanson, David L.; McGurn, John S.; Reynolds, Paul G.; Ruggles, Larry R.; Seamen, Hans; Spielman, Rick B.; Struve, Kenneth W.; Stygar, William A.; Simpson, Walter W.; Torres, Jose A.; Wenger, D.F.; Hammer, James H.; Rambo, Peter W.; Peterson, Darrell L.; Idzorek, George C.

Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ("hohlraum energetics") is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)]. © 2001 American Institute of Physics.

More Details

Analytic Models of High-Temperature Hohlraums

Physical Review E

Stygar, William A.; Olson, Richard E.; Spielman, Rick B.; Leeper, Ramon J.

A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

More Details

MHD modeling of conductors at ultrahigh current density

IEEE Transactions on Plasma Science

Rosenthal, Stephen E.; Desjarlais, Michael P.; Spielman, Rick B.; Stygar, William A.; Asay, J.R.; Douglas, Melissa R.; Hall, C.A.; Frese, M.H.; Morse, R.L.; Reisman, D.B.

In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator (Albuquerque, NM) we have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITL's of pulsed power accelerators used to produce intense particle beams, Z's disk, transmission line (downstream of the current addition) is in a 100-1200-Tesla regime; so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code [2], [3], [17] MACH2 we have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. The three purposes of this work are 1) to quantify power flow losses owing to ultrahigh magnetic fields, 2) to model the response of VISAR [4], [18], [19] diagnostic samples in various configurations on Z, and 3) to incorporate the most appropriate equation of state and conductivity models into our magnetohydrodynamics (MHD) computations. Certain features are strongly dependent on the details of the conductivity model.

More Details

A new linear inductive voltage adder driver for the Saturn Accelerator

Mazarakis, Michael G.; Spielman, Rick B.; Struve, Kenneth W.; Long, Finis W.

Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.

More Details

Z-Pinch Fusion for Energy Applications

Spielman, Rick B.

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

More Details

Composite wire plasma formation and evolution

Spielman, Rick B.

The detailed understanding of the formation and evolution of plasma from rapidly heated metallic wires is a long-standing challenge in the field of plasma physics and in exploding wire engineering. This physical process is made even more complicated if the wire material is composed of a number of individual layers. The authors have successfully developed both optical and x-ray backlighting diagnostics. In particular, the x-ray backlighting technique has demonstrated the capability for quantitative determination of the plasma density over a wide range of densities. This diagnostic capability shows that the process of plasma formation is composed of two separate phases: first, current is passed through a cold wire and the wire is heated ohmically, and, second, the heated wire evolves gases that break down and forms a low-density plasma surrounding the wire.

More Details
11 Results
11 Results