Publications

2 Results
Skip to search filters

Estancia Basin dynamic water budget

Thomas, Richard P.

The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by making adjustments to recharge and outflow that were within the parameters uncertainties. Although results of this calibrated model imply that there may be more water remaining in the aquifer than the Estancia Water Plan estimates, this answer is only another possible result in a range of answers that are based on large parameter uncertainties.

More Details

Integrating Monitoring and Decision Modeling within a Cooperative Framework: Promoting Transboundary Water Management and Avoiding Regional Conflict

Tidwell, Vincent C.; Thomas, Richard P.; Paananen, Orman H.; Salerno, Reynolds M.; Salerno, Reynolds M.; Passell, Howard D.; Cooper, Arlin C.; Conrad, Stephen H.

Surface and groundwater resources do not recognize political boundaries. Where nature and boundary cross, tension over shared water resources can erupt. Such tension is exacerbated in regions where demand approaches or exceeds sustainable supplies of water. Establishing equitable management strategies can help prevent and resolve conflict over shared water resources. This paper describes a methodology for addressing transboundary water issues predicated on the integration of monitoring and modeling within a framework of cooperation. Cooperative monitoring begins with agreement by international scientists and/or policy makers on transboundary monitoring goals and strategies; it leads to the process of obtaining and sharing agreed-upon information among parties with the purpose of providing verifiable and secure data. Cooperative modeling is the process by which the parties jointly interpret the data, forecast future events and trends, and quantify cause and effect relationships. Together, cooperative monitoring and modeling allow for the development and assessment of alternative management and remediation strategies that could form the basis of regional watershed agreements or treaties. An example of how this multifaceted approach might be used to manage a shared water resource is presented for the Kura River basin in the Caucasus.

More Details
2 Results
2 Results