Sandia has a multiplatform, multiapplication quantum information science program. The QIS program is built leveraging Sandia’s strengths in microelectronics fabrication, nanotechnology, and computational modeling, and complements and strengthens Sandia’s overall mission.
Sandia National Laboratories was recently awarded 3 new projects in Quantum Information Science (QIS) by the Department of Energy's Advanced Scientific Computing Research (ASCR) program and 2 new projects in quantum technologies both DOE's Basic Energy Sciences. Two of the ASCR projects are for work in quantum testbeds, while the third is in the area of quantum algorithms. A fourth QIS project was awarded in FY17, also in the area of quantum algorithms.
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.
Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.
Quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future. (Figure Presented).
Aspuru-Guzik, Alan A.; van Dam, Wim v.; Farhi, Edward F.; Gaitan, Frank G.; Humble, Travis S.; Jordan, Stephen J.; Landahl, Andrew J.; Love, Peter J.; Lucas, Robert F.; Preskill, John P.; Muller, Richard P.; Svore, Krysta S.; Wiebe, Nathan W.; Williams, Carl W.
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
We have been using RedSky to investigate the physics of donor atoms in silicon for use as qubits for quantum computing. Quantum computing promises to dramatically change the performance of certain algorithms; this work is part of a quantum computing project led by Malcolm Carroll. We have investigated the magnitude of energy barriers for transferring electrons between donor centers and to elecrostaticallydefined quantum dots at the silicon oxide interface. Understanding these barriers helps us design structures that we think will be robust to noise and decoherence effects, and will help us understand experimental results as we build preliminary structures. There are only a few other research groups in the world conducting research along these lines. The work has been an important element of understanding the design principles that constrain computing devices at low temperature. We will continue this work in the future, in particular to analyze experimental results we anticipate coming from CINT collaborators.
We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly Si double quantum dots (DQDs) developed for quantum computing. The simulator core includes Poisson, Schrodinger, and Configuration Interaction solvers which can be run individually or combined self-consistently. The simulator is built upon Sandia-developed Trilinos and Albany components, and is interfaced with the Dakota optimization tool. It is being developed for seamless integration, high flexibility and throughput, and is intended to be open source. The QCAD tool has been used to simulate a large number of fabricated silicon DQDs and has provided fast feedback for design comparison and optimization.
We have compared simulations using solutions of Poisson's equation to detailed capacitance measurements on a double quantum dot structure. We tabulate the results and show which cases show good agreement and which do not. The capacitance values are also compared to those calculated by a solution of Laplace's equation. Electron density is plotted and discussed. In order to understand relevant potential barriers we compare simulations at 50 Kelvin to simulations at 15 Kelvin. We show that the charge density does not differ greatly, but that the conduction band potential does. However, a method of estimating the potential at 0 Kelvin based on the charge distribution at 50 Kelvin is shown to be close to the potential at 15 Kelvin. This method was used to estimate potential barriers at 0 Kelvin in two quantum dot structures.
The observation and characterization of a single atom system in silicon is a significant landmark in half a century of device miniaturization, and presents an important new laboratory for fundamental quantum and atomic physics. We compare with multi-million atom tight binding (TB) calculations the measurements of the spectrum of a single two-electron (2e) atom system in silicon - a negatively charged (D-) gated Arsenic donor in a FinFET. The TB method captures accurate single electron eigenstates of the device taking into account device geometry, donor potentials, applied fields, interfaces, and the full host bandstructure. In a previous work, the depths and fields of As donors in six device samples were established through excited state spectroscopy of the D0 electron and comparison with TB calculations. Using self-consistent field (SCF) TB, we computed the charging energies of the D- electron for the same six device samples, and found good agreement with the measurements. Although a bulk donor has only a bound singlet ground state and a charging energy of about 40 meV, calculations show that a gated donor near an interface can have a reduced charging energy and bound excited states in the D- spectrum. Measurements indeed reveal reduced charging energies and bound 2e excited states, at least one of which is a triplet. The calculations also show the influence of the host valley physics in the two-electron spectrum of the donor.
A manager-worker-based parallelization algorithm for Quantum Monte Carlo (QMC-MW) is presented and compared with the pure iterative parallelization algorithm, which is in common use. The new manager-worker algorithm performs automatic load balancing, allowing it to perform near the theoretical maximal speed even on heterogeneous parallel computers. Furthermore, the new algorithm performs as well as the pure iterative algorithm on homogeneous parallel computers. When combined with the dynamic distributable decorrelation algorithm (DDDA) [Feldmann et al., J Comput Chem 28, 2309 (2007)], the new manager-worker algorithm allows QMC calculations to be terminated at a prespecified level of convergence rather than upon a prespecified number of steps (the common practice). This allows a guaranteed level of precision at the least cost. Additionally, we show (by both analytic derivation and experimental verification) that standard QMC implementations are not perfectly parallel as is often claimed.
A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.
We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.
The optimized effective potential (OEP) method allows orbital-dependent functionals to be used in density functional theory (DFT), which, in particular, allows exact exchange formulations of the exchange energy to be used in DFT calculations. Because the exact exchange is inherently self-interaction correcting, the resulting OEP calculations have been found to yield superior band-gaps for condensed-phase systems. Here we apply these methods to the isolated atoms He and Be, and compare to high quality experiments and calculations to demonstrate that the orbital energies accurately reproduce the excited state spectrum for these species. These results suggest that coupling the exchange-only OEP calculations with proper (orbital-dependent or other) correlation functions might allow quantitative accuracy from DFT calculations.
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.
Molecular compounds-comprised of mechanically interlocked components-such as rotaxanes and catenanes can be designed to display readily controllable internal movements of one component with respect to the other. Since theweak noncovalent bonding interactions that contribute to the template-directed synthesis of such compounds live on between the components thereafter, they can be activated such that the components move in either a linear fashion (rotaxanes) or a rotary manner (catenanes). These molecules can be activated by switching the recognition elements off and on between components chemically, electrically, or optically, such that they perform motions reminiscent of the moving parts in macroscopic machines. This review will highlight how the emergence ofthe mechanical bond in chemistry during the last two decades has brought with it a real prospect of integrating a bottom-up approach, based on molecular design and micro- and nanofabrication, to construct molecular electronic devices that store information at very high densities using minimal power. Although most of the research reported in this review on switchable catenanes and rotaxanes has been carried out in the context of solution-phase mechanical processes, recent results demonstrate that relative mechanical movements between the components in interlocked molecules can be stimulated (a) chemically in Langmuir and Langmuir-Blodgett films, (b) electrochemically as self-assembled monolayers on gold, and (c) electronically within the settings of solid-state devices. Not only has reversible, electronically driven switching been observed in devices incorporating a bistable [2]catenane, but a crosspoint random access memory circuit has been fabricated using an amphiphilic, bistable [2]rotaxane. The experiments provide strong evidence that switchable catenanes and rotaxanes operate mechanically in a soft-matter environment and can withstand simple device-processing steps. Studies on single-walled carbon nanotubes used as one of the electrodes in molecular switch tunnel junctions have revealed that interfacial chemical interactions involving electrodes containing carbon, silicon, and oxygen are good choices when carrying out molecular electronics on the class of rotaxane- and catenane-based molecules reported in this review. This conclusion is supported by differential conductance measurements (at 4K) made with single-molecule transistors using the break-junction method. It transpires that the electronic transport properties in such devices are more sensitive to the chemical nature of the molecule-electrode contacts than the details of the molecules' electronic structure away from the contacts. This result has profound implications for molecular electronics and highlights the importance of also considering the molecules and the electrodes as an integrated system. It all adds up to an integrated systems-oriented approach to nanotechnology that finds its inspiration in the transfer of concepts like molecular recognition from the life sciences into materials science and provides a model for how, in principle, to transfer elements of traditional chemistry to technology platforms that are being developed on the nanoscale. Before there can be any serious prospect of a technology, there has to be some good, sound science in the making. Molecular electronics is very much in its infancy and, as such, it can be expected to give rise to a great deal of intellectually stimulating science before it stands half a chance of becoming a viable companion to silicon-based technology.
We use the density functional theory and x-ray and neutron diffraction to investigate the crystal structures and reaction mechanisms of intermediate phases likely to be involved in decomposition of the potential hydrogen storage material LiAlH{sub 4}. First, we explore the decomposition mechanism of monoclinic LiAlH4 into monoclinic Li{sub 3}AlH{sub 6} plus face-centered cubic (fcc) Al and hydrogen. We find that this reaction proceeds through a five-step mechanism with an overall activation barrier of 36.9 kcal/mol. The simulated x ray and neutron diffraction patterns from LiAlH{sub 4} and Li{sub 3}AlH{sub 6} agree well with experimental data. On the other hand, the alternative decomposition of LiAlH{sub 4} into LiAlH2 plus H2 is predicted to be unstable with respect to that through Li{sub 3}AlH{sub 6}. Next, we investigate thermal decomposition of Li{sub 3}AlH{sub 6} into fcc LiH plus Al and hydrogen, occurring through a four-step mechanism with an activation barrier of 17.4 kcal/mol for the rate-limiting step. In the first and second steps, two Li atoms accept two H atoms from AlH{sub 6} to form the stable Li-H-Li-H complex. Then, two sequential H2 desorption steps are followed, which eventually result in fcc LiH plus fcc Al and hydrogen: Li{sub 3}AlH{sub 6}(monoclinic) {yields} 3 LiH(fcc) + Al(fcc) + 3/2 H{sub 2} is endothermic by 15.8 kcal/mol. The dissociation energy of 15.8 kcal/mol per formula unit compares to experimental enthalpies in the range of 9.8-23.9 kcal/mol. Finally, we explore thermal decomposition of LiH, LiH(s) + Al(s) {yields} LiAl(s) + 1/2 H{sub 2}(g) is endothermic by 4.6 kcal/mol. The B32 phase, which we predict as the lowest energy structure for LiAl, shows covalent bond characters in the Al-Al direction. Additionally, we determine that transformation of LiH plus Al into LiAlH is unstable with respect to transformation of LiH through LiAl.
We use quantum mechanics to characterize the structure and current-voltage performance of the Stoddart-Heath rotaxane-based programmable electronic switch. We find that the current when the ring is on the DNP is 37?58 times the current when the ring is on the TTF, in agreement with experiment (ratio of 10?100). This establishes the basis for iterative experimental?theoretical efforts to optimize systems for molecule-based electronics which we illustrate by predicting the effect of adding a group such as CN to the rotaxane.
The mechanism of hydroarylation of olefins by a homogeneous Ph-Ir(acac){sub 2}(L) catalyst is elucidated by first principles quantum mechanical methods (DFT), with particular emphasis on activation of the catalyst, catalytic cycle, and interpretation of experimental observations. On the basis of this mechanism, we suggest new catalysts expected to have improved activity. Initiation of the catalyst from the inert trans-form into the active cis-form occurs through a dissociative pathway with a calculated {Delta}H(0 K){sub {+-}} = 35.1 kcal/mol and {Delta}G(298 K){sub {+-}} = 26.1 kcal/mol. The catalytic cycle features two key steps, 1,2-olefin insertion and C?H activation via a novel mechanism, oxidative hydrogen migration. The olefin insertion is found to be rate determining, with a calculated {Delta}H(0 K){sub {+-}} = 27.0 kcal/mol and {Delta}G(298 K){sub {+-}} = 29.3 kcal/mol. The activation energy increases with increased electron density on the coordinating olefin, as well as increased electron-donating character in the ligand system. The regioselectivity is shown to depend on the electronic and steric characteristics of the olefin, with steric bulk and electron withdrawing character favoring linear product formation. Activation of the C?H bond occurs in a concerted fashion through a novel transition structure best described as an oxidative hydrogen migration. The character of the transition structure is seven coordinate Ir{sup V}, with a full bond formed between the migrating hydrogen and iridium. Several experimental observations are investigated and explained: (a) The nature of L influences the rate of the reaction through a ground-state effect. (b) The lack of {beta}-hydride products is due to kinetic factors, although {beta}-hydride elimination is calculated to be facile, all further reactions are kinetically inaccessible. (c) Inhibition by excess olefin is caused by competitive binding of olefin and aryl starting materials during the catalytic cycle in a statistical fashion. On the basis of this insertion-oxidative hydrogen transfer mechanism we suggest that electron-withdrawing substituents on the acac ligands, such as trifluoromethyl groups, are good modifications for catalysts with higher activity.
{sm_bullet}HF/DFT are one-particle approximation to the Schrodinger equation {sm_bullet} The one-particle, mean field approaches are what lead to the nonlinear eigenvalue problem {sm_bullet} DFT includes a parameterized XC functional that reproduces many-electron effects -Very accurate ground state structures and energies - Problematic for excited states, band gaps
We are investigating the use of face-to-face porphyrin (FTF) materials as potential oxygen reduction catalysts in fuel cells. The FTF materials were popularized by Anson and Collman, and have the interesting property that varying the spacing between the porphyrin rings changes the chemistry they catalyze from a two-electron reduction of oxygen to a four-electron reduction of oxygen. Our goal is to understand how changes in the structure of the FTF materials lead to either two-electron or four-electron reductions. This understand of the FTF catalysis is important because of the potential use of these materials as fuel cell electrocatalysts. Furthermore, the laccase family of enzymes, which has been proposed as an electrocatalytic enzyme in biofuel cell applications, also has family members that display either two-electron or four electron reduction of oxygen, and we believe that an understanding of the structure-function relationships in the FTF materials may lead to an understanding of the behavior of laccase and other enzymes. We will report the results of B3LYP density functional theory studies with implicit solvent models of the reduction of oxygen in several members of the cobalt FTF family.
Recent experiments have shown that in the oxygen isotopic exchange reaction for O({sup 1}D) + CO{sub 2} the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O({sup 1}D) + N{sub 2}O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N{sub 2}O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O({sup 1}D) + N{sub 2}O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O({sup 1}D) + N{sub 2}O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30-50% that of the total rate for the reactive channels.
We have been engaged in a search for coordination catalysts for the copolymerization of polar monomers (such as vinyl chloride and vinyl acetate) with ethylene. We have been investigating complexes of late transition metals with heterocyclic ligands. In this report we describe the synthesis of a symmetrical bis-thiadiazole. We have characterized one of the intermediates using single crystal X-ray diffraction. Several unsuccessful approaches toward 1 are also described, which shed light on some of the unique chemistry of thiadiazoles.