Solution Behavior and Resonance Raman Spectroscopic Investigation of salen-type Modified Subterranean Fluid Flow Tracers
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Inorganic Chemistry
The P,P-chelated heteroleptic complex bis[bis(diisopropylphosphino)amido]indium chloride [(i-Pr2P)2N]2InCl was prepared in high yield by treating InCl3 with 2 equiv of (i-Pr2P)2NLi in Et2O/tetrahydrofuran solution. Samples of [(i-Pr2P)2N]2InCl in a pentane slurry, a CH2Cl2 solution, or in the solid state were exposed to CO2, resulting in the insertion of CO2 into two of the four M-P bonds to produce [O2CP(i-Pr2)NP(i-Pr2)]2InCl in each case. Compounds were characterized by multinuclear NMR and IR spectroscopy, as well as single-crystal X-ray diffraction. ReactIR solution studies show that the reaction is complete in less than 1 min at room temperature in solution and in less than 2 h in the solid-gas reaction. The CO2 complex is stable up to at least 60°C under vacuum, but the starting material is regenerated with concomitant loss of carbon dioxide upon heating above 75°C. The compound [(i-Pr2P)2N]2InCl also reacts with CS2 to give a complicated mixture of products, one of which was identified as the CS2 cleavage product [Si=P(i-Pr2)NP(i-Pr2)]2InCl]2(μ-Cl)[μ-(i-Pr2P)2N)].
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemical Communications
Reaction of [κ2-PR2C(SiMe3)Py]2Zn (R = Ph, 2a; iPr, 2b) with CO2 affords the products of formal insertion at the C-Si bond, [κ2-PR2CC(O)O(SiMe3)Py]2Zn (R = Ph, 3a; iPr, 3b). Insertion product 3b was structurally characterized. The reaction appears to be a stepwise insertion and rearrangement of CO2 based on kinetic data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.
Group 12 metal cyclam complexes and their derivatives as well as (octyl){sub 2}Sn(OMe){sub 2} were examined as potential catalysts for the production of dimethyl carbonate (DMC) using CO{sub 2} and methanol. The zinc cyclams will readily take up carbon dioxide and methanol at room temperature and atmospheric pressure to give the metal methyl carbonate. The tin exhibited an improvement in DMC yields. Studies involving the reaction of bis-phosphino- and (phosphino)(silyl)-amido group 2 and 12 complexes with CO{sub 2} and CS{sub 2} were performed. Notable results include formation of phosphino-substituted isocyanates, fixation of three moles of CO{sub 2} in an unprecedented [N(CO{sub 2}){sub 3}]{sup 3-} anion, and rapid splitting of CS{sub 2} by main group elements under extremely mild conditions. Similar investigations of divalent group 14 silyl amides led to room temperature splitting of CO{sub 2} into CO and metal oxide clusters, and the formation of isocyanates and carbodiimides.
Energy production is inextricably linked to national security and poses the danger of altering the environment in potentially catastrophic ways. There is no greater problem than sustainable energy production. Our purpose was to attack this problem by examining processes, technology, and science needed for recycling CO{sub 2} back into transportation fuels. This approach can be thought of as 'bio-inspired' as nature employs the same basic inputs, CO{sub 2}/energy/water, to produce biomass. We addressed two key deficiencies apparent in current efforts. First, a detailed process analysis comparing the potential for chemical and conventional engineering methods to provide a route for the conversion of CO{sub 2} and water to fuel has been completed. No apparent 'showstoppers' are apparent in the synthetic route. Opportunities to improve current processes have also been identified and examined. Second, we have also specifically addressed the fundamental science of the direct production of methanol from CO{sub 2} using H{sub 2} as a reductant.
Chemical Communications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Angewandte Chemie International Edition
Abstract not provided.
The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.
Journal of the American Chemical Society
Abstract not provided.
Abstract not provided.
Control of nanoparticle size is crucial to the development of nanotechnology. At this point in time, no general, rational synthetic strategy for controlling nanocrystal diameters and producing narrow diameter distributions has emerged. This is a reflection of a poor understanding of the mechanisms for nanocrystal growth. Based on previous studies of bismuth and gold nanoparticle growth, this work clearly establishes two new synthetic approaches to controlled growth of colloidal Pt nanocrystals, both based on aggregative-growth mechanisms, which afford narrow size distributions and size control over a wide and relevant size regime. The first new method is a phase transfer process, where growth is controlled by varying ligand stabilizer concentrations. The second method involves rapid reduction of a molecular platinum precursor in the presence of a polymer stabilizer. At present the size control is empirical, and incompletely understood and incompletely developed. However, the new synthetic pathways are amenable to kinetic study and analysis, establishing that a quantitative, rational control of sizes and size distributions can be achieved.
This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.
Abstract not provided.
The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer chains.