Publications

49 Results
Skip to search filters

3D orthorhombic earth model effects on seismic source characterization

Jensen, Richard P.; Preston, Leiph A.

Most earth materials are anisotropic with regard to seismic wave-speeds, especially materials such as shales, or where oriented fractures are present. However, the base assumption for many numerical simulations is to treat earth materials as isotropic media. This is done for simplicity, the apparent weakness of anisotropy in the far field, and the lack of well-characterized anisotropic material properties for input into numerical simulations. One approach for addressing the higher complexity of actual geologic regions is to model the material as an orthorhombic medium. We have developed an explicit time-domain, finite-difference (FD) algorithm for simulating three-dimensional (3D) elastic wave propagation in a heterogeneous orthorhombic medium. The objective of this research is to investigate the errors and biases that result from modeling a non-isotropic medium as an isotropic medium. This is done by computing “observed data” by using synthetic, anisotropic simulations with the assumption of an orthorhombic, anisotropic earth model. Green’s functions for an assumed isotropic earth model are computed and then used an inversion designed to estimate moment tensors with the “observed” data. One specific area of interest is how shear waves, which are introduced in an anisotropic model even for an isotropic explosion, affect the characterization of seismic sources when isotropic earth assumptions are made. This work is done in support of the modeling component of the Source Physics Experiment (SPE), a series of underground chemical explosions at the Nevada National Security Site (NNSS).

More Details

Verification of a rapid mooring and foundation design tool

Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment

Weller, Sam D.; Hardwick, Jon; Gomez, Steven P.; Heath, Jason; Jensen, Richard P.; Mclean, Niall; Johanning, Lars

Marine renewable energy devices require mooring and foundation systems that suitable in terms of device operation and are also robust and cost effective. In the initial stages of mooring and foundation development a large number of possible configuration permutations exist. Filtering of unsuitable designs is possible using information specific to the deployment site (i.e. bathymetry, environmental conditions) and device (i.e. mooring and/or foundation system role and cable connection requirements). The identification of a final solution requires detailed analysis, which includes load cases based on extreme environmental statistics following certification guidance processes. Static and/or quasi-static modelling of the mooring and/or foundation system serves as an intermediate design filtering stage enabling dynamic time-domain analysis to be focused on a small number of potential configurations. Mooring and foundation design is therefore reliant on logical decision making throughout this stage-gate process. The open-source DTOcean (Optimal Design Tools for Ocean Energy Arrays) Tool includes a mooring and foundation module, which automates the configuration selection process for fixed and floating wave and tidal energy devices. As far as the authors are aware, this is one of the first tools to be developed for the purpose of identifying potential solutions during the initial stages of marine renewable energy design. While the mooring and foundation module does not replace a full design assessment, it provides in addition to suitable configuration solutions, assessments in terms of reliability, economics and environmental impact. This article provides insight into the solution identification approach used by the module and features the verification of both the mooring system calculations and the foundation design using commercial software. Several case studies are investigated: a floating wave energy converter and several anchoring systems. It is demonstrated that the mooring and foundation module is able to provide device and/or site developers with rapid mooring and foundation design solutions to appropriate design criteria.

More Details

Deep Borehole Field Test Laboratory and Borehole Testing Strategy

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W.P.; Sevougian, Stephen D.; Bryan, Charles R.; Jang, Jay J.; Stein, Emily S.; Bauer, Stephen J.; Daley, Tom D.; Freifeld, Barry M.; Birkholzer, Jens T.; Spane, Frank A.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

More Details

An investigation of DTOcean foundation and anchor systems

Gomez, Steven P.; Jensen, Richard P.; Heath, Jason

This memo documents the mechanical loading analysis performed on the second set of DTOcean program WP4 foundation and anchor systems submodule design iterations [4]. Finite Element Analysis (FEA) simulations were performed to validate design requirements defined by Python based analytic simulations of the WP4 program Naval Facilities Engineering Command (NAVFAC) tool. This FEA procedure focuses on worst case loading scenarios on shallow gravity foundation and pile anchor designs produced by WP4. These models include a steel casing and steel anchor with soft clay surrounding the steel components respectively.

More Details

An investigation of DTOcean foundation and anchor systems

Gomez, Steven P.; Jensen, Richard P.; Heath, Jason

This memo documents the mechanical loading analysis performed to date for the DTOcean program WP4 foundation and anchor systems submodule. FEA simulations were performed to validate design requirements defined by Python based analytic simulations of the WP4 program Naval Facilities Engineering Command (NAVFAC) tool. This FEA procedure focuses on worst case loading scenarios on direct mbedment anchor and suction caisson designs produced by WP4. These models include a steel casing and steel anchor with soft clay and dense sand surrounding the steel components respectively.

More Details

Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.; Munoz-Ramos, Karina M.

Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.

More Details

Methodology for Preliminary Design of Electrical Microgrids

Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M.; Munoz-Ramos, Karina M.; Abdallah, Tarek A.

Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

More Details

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu H.; Sevougian, Stephen D.; Birkholzer, Jens T.; Freifeld, Barry M.; Daley, Tom D.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

Use of nanofiltration to reduce cooling tower water usage

Altman, Susan J.; Jensen, Richard P.; Everett, Randy L.

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

More Details

Dynamic load test of Arquin-designed CMU wall

Jensen, Richard P.

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

More Details

Static load test of Arquin-designed CMU wall

Jensen, Richard P.; Cherry, Jeffery L.

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

More Details

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details
49 Results
49 Results