Modeling the neutron tube ion beam with ICARUS
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents the strategies for verification and validation of the codes LSP and ICARUS used for simulating the operation of the neutron tubes used in all modern nuclear weapons. The codes will be used to assist in the design of next generation neutron generators and help resolve manufacturing issues for current and future production of neutron devices. Customers for the software are identified, tube phenomena are identified and ranked, software quality strategies are given, and the validation plan is set forth.
As part of a project with SEMATECH, detailed chemical reaction mechanisms have been developed that describe the gas-phase and surface chemistry occurring during the fluorocarbon plasma etching of silicon dioxide and related materials. The fluorocarbons examined are C{sub 2}F{sub 6}, CHF{sub 3} and C{sub 4}F{sub 8}, while the materials studied are silicon dioxide, silicon, photoresist, and silica-based low-k dielectrics. These systems were examined at different levels, ranging from in-depth treatment of C{sub 2}F{sub 6} plasma etch of oxide, to a fairly cursory examination of C{sub 4}F{sub 8} etch of the low-k dielectric. Simulations using these reaction mechanisms and AURORA, a zero-dimensional model, compare favorably with etch rates measured in three different experimental reactors, plus extensive diagnostic absolute density measurements of electron and negative ions, relative density measurements of CF, CF{sub 2}, SiF and SiF{sub 2} radicals, ion current densities, and mass spectrometric measurements of relative ion densities.