Laboratory Biorisk Managment
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in CSIS .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Laboratories that work with biological agents need to manage their safety risks to persons working the laboratories and the human and animal community in the surrounding areas. Biosafety guidance defines a wide variety of biosafety risk mitigation measures, which include measures which fall under the following categories: engineering controls, procedural and administrative controls, and the use of personal protective equipment; the determination of which mitigation measures should be used to address the specific laboratory risks are dependent upon a risk assessment. Ideally, a risk assessment should be conducted in a manner which is standardized and systematic which allows it to be repeatable and comparable. A risk assessment should clearly define the risk being assessed and avoid over complication.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As George W. Bush recognized in November 2001, "Infectious diseases make no distinctions among people and recognize no borders." By their very nature, infectious diseases of natural or intentional (bioterrorist) origins are capable of threatening regional health systems and economies. The best mechanism for minimizing the spread and impact of infectious disease is rapid disease detection and diagnosis. For rapid diagnosis to occur, infectious substances (IS) must be transported very quickly to appropriate laboratories, sometimes located across the world. Shipment of IS is problematic since many carriers, concerned about leaking packages, refuse to ship this material. The current packaging does not have any ability to neutralize or kill leaking IS. The technology described here was developed by Sandia National Laboratories to provide a fail-safe packaging system for shipment of IS that will increase the likelihood that critical material can be shipped to appropriate laboratories following a bioterrorism event or the outbreak of an infectious disease. This safe and secure packaging method contains a novel decontaminating material that will kill or neutralize any leaking infectious organisms; this feature will decrease the risk associated with shipping IS, making transport more efficient. 3 DRAFT4
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Biosecurity must be implemented without impeding biomedical and bioscience research. Existing security literature and regulatory requirements do not present a comprehensive approach or clear model for biosecurity, nor do they wholly recognize the operational issues within laboratory environments. To help address these issues, the concept of Biosecurity Levels should be developed. Biosecurity Levels would have increasing levels of security protections depending on the attractiveness of the pathogens to adversaries. Pathogens and toxins would be placed in a Biosecurity Level based on their security risk. Specifically, the security risk would be a function of an agent's weaponization potential and consequences of use. To demonstrate the concept, examples of security risk assessments for several human, animal, and plant pathogens will be presented. Higher security than that currently mandated by federal regulations would be applied for those very few agents that represent true weapons threats and lower levels for the remainder.
Abstract not provided.
Nonproliferation Review
Abstract not provided.
Proposed for publication in the Journal of Emerging Infectious Diseases.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Bioscience.
Abstract not provided.
The threat from biological weapons is assessed through both a comparative historical analysis of the patterns of biological weapons use and an assessment of the technological hurdles to proliferation and use that must be overcome. The history of biological weapons is studied to learn how agents have been acquired and what types of states and substate actors have used agents. Substate actors have generally been more willing than states to use pathogens and toxins and they have focused on those agents that are more readily available. There has been an increasing trend of bioterrorism incidents over the past century, but states and substate actors have struggled with one or more of the necessary technological steps. These steps include acquisition of a suitable agent, production of an appropriate quantity and form, and effective deployment. The technological hurdles associated with the steps present a real barrier to producing a high consequence event. However, the ever increasing technological sophistication of society continually lowers the barriers, resulting in a low but increasing probability of a high consequence bioterrorism event.
Abstract not provided.
Surface and groundwater resources do not recognize political boundaries. Where nature and boundary cross, tension over shared water resources can erupt. Such tension is exacerbated in regions where demand approaches or exceeds sustainable supplies of water. Establishing equitable management strategies can help prevent and resolve conflict over shared water resources. This paper describes a methodology for addressing transboundary water issues predicated on the integration of monitoring and modeling within a framework of cooperation. Cooperative monitoring begins with agreement by international scientists and/or policy makers on transboundary monitoring goals and strategies; it leads to the process of obtaining and sharing agreed-upon information among parties with the purpose of providing verifiable and secure data. Cooperative modeling is the process by which the parties jointly interpret the data, forecast future events and trends, and quantify cause and effect relationships. Together, cooperative monitoring and modeling allow for the development and assessment of alternative management and remediation strategies that could form the basis of regional watershed agreements or treaties. An example of how this multifaceted approach might be used to manage a shared water resource is presented for the Kura River basin in the Caucasus.
Abstract not provided.