Publications

7 Results
Skip to search filters

Optimization-Based Fast-Frequency Estimation and Control of Low-Inertia Microgrids

IEEE Transactions on Energy Conversion

Tamrakar, Ujjwol; Copp, David A.; Nguyen, Tu A.; Hansen, Timothy M.; Tonkoski, Reinaldo

The lack of inertial response from non-synchronous, inverter-based generation in microgrids makes the power system vulnerable to a large rate of change of frequency (ROCOF) and frequency excursions. Energy storage systems (ESSs) can be utilized to provide fast-frequency support to prevent such large excursions in the system. However, fast-frequency support is a power-intensive application that has a significant impact on the ESS lifetime. In this paper, a framework that allows the ESS operator to provide fast-frequency support as a service is proposed. The framework maintains the desired quality-of-service (limiting the ROCOF and frequency) while taking into account the ESS lifetime and physical limits. The framework utilizes moving horizon estimation (MHE) to estimate the frequency deviation and ROCOF from noisy phase-locked loop (PLL) measurements. These estimates are employed by a model predictive control (MPC) algorithm that computes control actions by solving a finite-horizon, online optimization problem. Additionally, this approach avoids oscillatory behavior induced by delays that are common when using low-pass filters as with traditional derivative-based (virtual inertia) controllers. MATLAB/Simulink simulations on a test system from Cordova, Alaska, show the effectiveness of the MHE-MPC approach to reduce frequency deviations and ROCOF of a low-inertia microgrid.

More Details

Inertia estimation in power systems using energy storage and system identification techniques

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Tamrakar, Ujjwol; Guruwacharya, Nischal; Bhujel, Niranjan; Wilches-Bernal, Felipe; Hansen, Timothy M.; Tonkoski, Reinaldo

Fast-frequency control strategies have been proposed in the literature to maintain inertial response of electric generation and help with the frequency regulation of the system. However, it is challenging to deploy such strategies when the inertia constant of the system is unknown and time-varying. In this paper, we present a data-driven system identification approach for an energy storage system (ESS) operator to identify the inertial response of the system (and consequently the inertia constant). The method is first tested and validated with a simulated genset model using small changes in the system load as the excitation signal and measuring the corresponding change in frequency. The validated method is then used to experimentally identify the inertia constant of a genset. The inertia constant of the simulated genset model was estimated with an error of less than 5% which provides a reasonable estimate for the ESS operator to properly tune the parameters of a fast-frequency controller.

More Details
7 Results
7 Results