Publications

10 Results
Skip to search filters

Vehicle track detection in CCD imagery via conditional random field

Conference Record - Asilomar Conference on Signals, Systems and Computers

Malinas, Rebecca; Quach, Tu-Thach Q.; Koch, Mark W.

Coherent change detection (CCD) can indicate subtle scene changes in synthetic aperture radar (SAR) imagery, such as vehicle tracks. Automatic track detection in SAR CCD is difficult due to various sources of low coherence other than the track activity we wish to detect. Existing methods require user cues or explicit modeling of track structure, which limit algorithms' ability to find tracks that do not fit the model. In this paper, we present a track detection approach based on a pixel-level labeling of the image via a conditional random field classifier, with features based on radial derivatives of local Radon transforms. Our approach requires no modeling of track characteristics and no user input, other than a training phase for the unary cost of the conditional random field. Experiments show that our method can successfully detect both parallel and single tracks in SAR CCD as well as correctly declare when no tracks are present.

More Details

Low-Level track finding and completion using random fields

IS and T International Symposium on Electronic Imaging Science and Technology

Quach, Tu-Thach Q.; Malinas, Rebecca; Koch, Mark W.

Coherent change detection (CCD) images, which are prod- ucts of combining two synthetic aperture radar (SAR) images taken at different times of the same scene, can reveal subtle sur- face changes such as those made by tire tracks. These images, however, have low texture and are noisy, making it difficult to au- Tomate track finding. Existing techniques either require user cues and can only trace a single track or make use of templates that are difficult to generalize to different types of tracks, such as those made by motorcycles, or vehicles sizes. This paper presents an approach to automatically identify vehicle tracks in CCD images. We identify high-quality track segments and leverage the con- strained Delaunay triangulation (CDT) to find completion track segments. We then impose global continuity and track smoothness using a binary random field on the resulting CDT graph to determine edges that belong to real tracks. Experimental results show that our algorithm outperforms existing state-of-the- Art techniques in both accuracy and speed.

More Details

Road segmentation using multipass single-pol synthetic aperture radar imagery

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Koch, Mark W.; Moya, Mary M.; Chow, James G.; Goold, Jeremy G.; Malinas, Rebecca

Synthetic aperture radar (SAR) is a remote sensing technology that can truly operate 24/7. It's an all-weather system that can operate at any time except in the most extreme conditions. By making multiple passes over a wide area, a SAR can provide surveillance over a long time period. For high level processing it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call 'static features.' In this paper we concentrate on automatic road segmentation. This not only serves as a surrogate for finding other static features, but road detection in of itself is important for aligning SAR images with other data sources. In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. We also show how a modified Kolmogorov-Smirnov test can be used to model the static features even when the independent observation assumption is violated.

More Details

A model-based approach to finding tracks in SAR CCD images

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Quach, Tu-Thach Q.; Malinas, Rebecca; Koch, Mark W.

Combining multiple synthetic aperture radar (SAR) images taken at different times of the same scene produces coherent change detection (CCD) images that can detect small surface changes such as tire tracks. The resulting CCD images can be used in an automated approach to identify and label tracks. Existing techniques have limited success due to the noisy nature of these CCD images. In particular, existing techniques require some user cues and can only trace a single track. This paper presents an approach to automatically identify and label multiple tracks in CCD images. We use an explicit objective function that utilizes the Bayesian information criterion to find the simplest set of curves that explains the observed data. Experimental results show that it is capable of identifying tracks under various scenes and can correctly declare when no tracks are present.

More Details

Preliminary Results on Uncertainty Quantification for Pattern Analytics

Stracuzzi, David J.; Brost, Randolph B.; Chen, Maximillian G.; Malinas, Rebecca; Peterson, Matthew G.; Phillips, Cynthia A.; Robinson, David G.; Woodbridge, Diane W.

This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search, and discuss a number of possible improvements for each.

More Details
10 Results
10 Results