Publications

Results 1–50 of 71
Skip to search filters

Modeling and experiments of high-quality factor cavity shielding effectiveness

2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019

Campione, Salvatore; Warne, Larry K.; Reines, Isak C.; Williams, Jeffery T.; Gutierrez, Roy K.; Coats, Rebecca S.; Basilio, Lorena I.

In this paper, we investigate the coupling from external electromagnetic (EM) fields to the interior EM fields of a high-quality factor cylindrical cavity through a small perturbing slot. We illustrate the shielding effectiveness versus frequency, highlighting bounds on the penetrant power through the slot. Because internal fields may become larger than external ones, we then introduce a small amount of microwave absorbing materials decorating the slot to improve shielding effectiveness considerably, as shown by both simulations and experiments. Although the cylindrical cavity is used for demonstration purposes in this paper, the conclusions presented here can be leveraged for use with more complex cavity structures.

More Details

Preliminary Survey on the Effectiveness of an Electromagnetic Dampener to Improve System Shielding Effectiveness

Campione, Salvatore; Reines, Isak C.; Warne, Larry K.; Williams, Jeffery T.; Gutierrez, Roy K.; Coats, Rebecca S.; Basilio, Lorena I.

This report explores the potential for reducing the fields and the quality factor within a system cavity by introducing microwave absorbing materials. Although the concept of introducing absorbing (lossy) materials within a cavity to drive the interior field levels down is well known, increasing the loading into a complex weapon cavity specifically for improved electromagnetic performance has not, in general, been considered, and this will be the subject of this work. We compare full-wave simulations to experimental results, demonstrating the applicability of the proposed method.

More Details

Massively parallel frequency domain electromagnetic simulation codes

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Langston, William L.; Kotulski, J.D.; Coats, Rebecca S.; Jorgenson, Roy E.; Blake, S.A.; Campione, Salvatore; Pung, Aaron J.; Zinser, Brian

This paper provides an overview of the electromagnetic frequency domain simulation capabilities of the Electromagnetic Theory department at Sandia National Laboratories via a description of two of its codes. EIGER is a Method of Moments code for electromagnetic simulations, but it only runs on traditional CPUs, not on new architectures. Gemma is in development to replace EIGER and will run on many architectures, including CPUs, GPUs, and MICs, by leveraging the Kokkos library.

More Details

A first principles cable braid electromagnetic penetration model

Proceedings of the 2017 19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017

Campione, Salvatore; Warne, Larry K.; Coats, Rebecca S.; Langston, William L.; Basilio, Lorena I.; Johnson, W.A.

We propose a cable braid electromagnetic penetration model that is based on first-principles and is derived strictly from the geometrical parameters of the cable in question. We apply this formulation to the case of a one-dimensional array of wires, which can also be modeled analytically via a multipole-conformal mapping expansion for the wire charges and is extended by means of Laplace solutions in bipolar coordinates. Both electric and magnetic penetrations are analyzed, and comparisons are performed between results from the first principles cable braid electromagnetic penetration model and those obtained using the multipole-conformal mapping expansion method. We find results in very good agreement when using up to the octopole moment (for the first principles model), covering a dynamic range of radius-to-half-spacing ratio up to 0.6. These results give us the confidence that our first principles model is applicable to the geometric characteristics of many commercial cables.

More Details

Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Johnson, William A.; Coats, Rebecca S.; Basilio, Lorena I.

In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. These results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.

More Details

A bound on electromagnetic penetration through a slot aperture with backing cavity

Warne, Larry K.; Jorgenson, Roy E.; Williams, Jeffery T.; Basilio, Lorena I.; Coats, Rebecca S.; Campione, Salvatore; Chen, Kenneth C.; Langston, William L.

This report examines bounds on the penetrant power through ports of entry into a conductive cavity. We first replace the cavity by a load and consider the maximum power transfer properties of an antenna or an aperture. We consider how limitations on the load quality factor place limits on received power. For general frequency ranges we model the backing region by means of a uniformly distributed matched load along a slot aperture and adjust its value for maximum power transfer. This result is derived in closed form using a transmission line model for the aperture. This result illustrates the reduction in received power for low frequencies with finitely conducting wall materials. At high frequencies it approaches the receiving cross section of a linear array having the slot length dimension. Next we examine a slot aperture in a conducting rectangular enclosure and determine how the cavity wall losses and resulting quality factor limit the penetrant power. Detailed simulations and experimental measurements are compared with each other and with the bounding results to assess the accuracy of the bounds. These comparisons also indicate limitations on the accuracy of the models due to perturbing influences in construction, such as bolted joints.

More Details

Diffusion Through Single And Double Layer Shields And Induced Voltages From Low Frequency Electromagnetic Environments

Warne, Larry K.; Basilio, Lorena I.; Coats, Rebecca S.; Jorgenson, Roy E.; Chen, Kenneth C.

The di ff usion through shells consisting of either a single conducting or double conducting layers are examined. Exterior drives resulting from Electromagn etic Radiation (EMR), Electromagnetic Pulse (EMP), nearby (indirect) lightning, and DC (low frequency) magnetic fi eldsareused. Boththeinterior fi eld and the induced voltage from a maximally oriented and sized single turn loop are estimated. It is shown that the loop voltage with the empty cavity bounds the case where the center region is excluded by a conducting object. The cases of interior magnetic and electric fi elds from an exterior magnetic drive and the interior electric fi eld from an exterior electric drive are both solved; the magnetic interior fi eldfromanexterior magnetic drive is the only case that results in a nonzero low frequency penetration. Intentionally Left Blank

More Details

Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

Physical Review Special Topics - Accelerators and Beams

Waisman, E.M.; McBride, Ryan D.; Cuneo, M.E.; Wenger, D.F.; Fowler, W.E.; Johnson, W.A.; Basilio, Lorena I.; Coats, Rebecca S.; Jennings, C.A.; Sinars, Daniel S.; Vesey, Roger A.; Jones, Brent M.; Ampleford, David A.; Lemke, Raymond W.; Martin, M.R.; Schrafel, P.C.; Lewis, S.A.; Moore, James M.; Savage, Mark E.; Stygar, William A.

Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.

More Details

High-voltage atmospheric breakdown across intervening rutile dielectrics

Simpson, Sean S.; Coats, Rebecca S.; Hjalmarson, Harold P.; Jorgenson, Roy E.; Pasik, Michael F.

This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

More Details

Protection characteristics of a Faraday cage compromised by lightning burnthrough

Warne, Larry K.; Martinez, Leonard E.; Jorgenson, Roy E.; Merewether, Kimball O.; Jojola, John M.; Coats, Rebecca S.; Bystrom, Edward B.

A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

More Details

New self-magnetically insulated connection of multi-level accelerators to a common load

Digest of Technical Papers-IEEE International Pulsed Power Conference

VanDevender, J.P.; Langston, William L.; Pasik, Michael F.; Coats, Rebecca S.; Pointon, Timothy D.; Seidel, David B.; Jennings, C.A.; McKee, G.R.; Schneider, Larry X.

We have developed a new type of convolute called the Clam Shell MITL (CSMITL) to couple multi-level accelerators to a common load. The CSMITL has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. We report the first experimental results on a CSMITL, which convolutes two disk feeds on the Saturn accelerator into a single disk feed. Experiments with a high impedance electron beam load operating at twice the self-limited impedance of the CSMITL confirm key design features and demonstrate robust operation. © 2011 IEEE.

More Details

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Electromagnetic coupling between transmitters and electro-explosive devices located within an enclosure

Jorgenson, Roy E.; Warne, Larry K.; Coats, Rebecca S.

This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.

More Details
Results 1–50 of 71
Results 1–50 of 71