In this paper, we investigate the coupling from external electromagnetic (EM) fields to the interior EM fields of a high-quality factor cylindrical cavity through a small perturbing slot. We illustrate the shielding effectiveness versus frequency, highlighting bounds on the penetrant power through the slot. Because internal fields may become larger than external ones, we then introduce a small amount of microwave absorbing materials decorating the slot to improve shielding effectiveness considerably, as shown by both simulations and experiments. Although the cylindrical cavity is used for demonstration purposes in this paper, the conclusions presented here can be leveraged for use with more complex cavity structures.
This report explores the potential for reducing the fields and the quality factor within a system cavity by introducing microwave absorbing materials. Although the concept of introducing absorbing (lossy) materials within a cavity to drive the interior field levels down is well known, increasing the loading into a complex weapon cavity specifically for improved electromagnetic performance has not, in general, been considered, and this will be the subject of this work. We compare full-wave simulations to experimental results, demonstrating the applicability of the proposed method.
This paper provides an overview of the electromagnetic frequency domain simulation capabilities of the Electromagnetic Theory department at Sandia National Laboratories via a description of two of its codes. EIGER is a Method of Moments code for electromagnetic simulations, but it only runs on traditional CPUs, not on new architectures. Gemma is in development to replace EIGER and will run on many architectures, including CPUs, GPUs, and MICs, by leveraging the Kokkos library.
We propose a cable braid electromagnetic penetration model that is based on first-principles and is derived strictly from the geometrical parameters of the cable in question. We apply this formulation to the case of a one-dimensional array of wires, which can also be modeled analytically via a multipole-conformal mapping expansion for the wire charges and is extended by means of Laplace solutions in bipolar coordinates. Both electric and magnetic penetrations are analyzed, and comparisons are performed between results from the first principles cable braid electromagnetic penetration model and those obtained using the multipole-conformal mapping expansion method. We find results in very good agreement when using up to the octopole moment (for the first principles model), covering a dynamic range of radius-to-half-spacing ratio up to 0.6. These results give us the confidence that our first principles model is applicable to the geometric characteristics of many commercial cables.
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. These results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.
This report examines bounds on the penetrant power through ports of entry into a conductive cavity. We first replace the cavity by a load and consider the maximum power transfer properties of an antenna or an aperture. We consider how limitations on the load quality factor place limits on received power. For general frequency ranges we model the backing region by means of a uniformly distributed matched load along a slot aperture and adjust its value for maximum power transfer. This result is derived in closed form using a transmission line model for the aperture. This result illustrates the reduction in received power for low frequencies with finitely conducting wall materials. At high frequencies it approaches the receiving cross section of a linear array having the slot length dimension. Next we examine a slot aperture in a conducting rectangular enclosure and determine how the cavity wall losses and resulting quality factor limit the penetrant power. Detailed simulations and experimental measurements are compared with each other and with the bounding results to assess the accuracy of the bounds. These comparisons also indicate limitations on the accuracy of the models due to perturbing influences in construction, such as bolted joints.
The di ff usion through shells consisting of either a single conducting or double conducting layers are examined. Exterior drives resulting from Electromagn etic Radiation (EMR), Electromagnetic Pulse (EMP), nearby (indirect) lightning, and DC (low frequency) magnetic fi eldsareused. Boththeinterior fi eld and the induced voltage from a maximally oriented and sized single turn loop are estimated. It is shown that the loop voltage with the empty cavity bounds the case where the center region is excluded by a conducting object. The cases of interior magnetic and electric fi elds from an exterior magnetic drive and the interior electric fi eld from an exterior electric drive are both solved; the magnetic interior fi eldfromanexterior magnetic drive is the only case that results in a nonzero low frequency penetration. Intentionally Left Blank
Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.
This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).
This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.
An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.
An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.
This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.
STDEM is the structured mesh time-domain electromagnetic and plasma physics component of Emphasis/Nevada. This report provides a guide on using STDEM. Emphasis, the electromagnetic physics analysis system, is a suite of codes for the simulation of electromagnetic and plasma physics phenomena. The time-dependent components of Emphasis have been implemented using the Nevada framework [1]. The notation Emphasis/Nevada is used to highlight this relationship and/or distinguish the time-dependent components of Emphasis. In theory the underlying framework should have little influence on the user's interaction with the application. In practice the framework tends to be more invasive as it provides key services such as input parsing and defines fundamental concepts and terminology. While the framework offers many technological advancements from a software development point of view, from a user's perspective the key benefits of the underlying framework are the common interface for all framework physics modules as well as the ability to perform coupled physics simulations. STDEM is the structured time-domain electromagnetic and plasma physics component of Emphasis/Nevada. STDEM provides for the full-wave solution to Maxwell's equations on multi-block three-dimensional structured grids using finite-difference time-domain (FDTD) algorithms. Additionally STDEM provides for the fully relativistic, self-consistent simulation of charged particles using particle-in-cell (PIC) algorithms.
Transverse electromagnetic (TEM) wave analysis is used to estimate the efficiencies of the coax to triplate transition in Sandia's Z-20 test module. The structure of both the TEM mode and higher order TE modes in the triplate transmission line are characterized. In addition, three dimensional time domain simulations are carried out and used in conjunction with the modal analysis to provide insight into the wave structure excited in the triplate transmission line.
QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.