Publications

Results 1–50 of 170
Skip to search filters

Composing preconditioners for multiphysics PDE systems with applications to Generalized MHD

Tuminaro, Raymond S.; Crockatt, Michael M.; Robinson, Allen C.

New patch smoothers or relaxation techniques are developed for solving linear matrix equations coming from systems of discretized partial differential equations (PDEs). One key linear solver challenge for many PDE systems arises when the resulting discretization matrix has a near null space that has a large dimension, which can occur in generalized magnetohydrodynamic (GMHD) systems. Patch-based relaxation is highly effective for problems when the null space can be spanned by a basis of locally supported vectors. The patch-based relaxation methods that we develop can be used either within an algebraic multigrid (AMG) hierarchy or as stand-alone preconditioners. These patch-based relaxation techniques are a form of well-known overlapping Schwarz methods where the computational domain is covered with a series of overlapping sub-domains (or patches). Patch relaxation then corresponds to solving a set of independent linear systems associated with each patch. In the context of GMHD, we also reformulate the underlying discrete representation used to generate a suitable set of matrix equations. In general, deriving a discretization that accurately approximates the curl operator and the Hall term while also producing linear systems with physically meaningful near null space properties can be challenging. Unfortunately, many natural discretization choices lead to a near null space that includes non-physical oscillatory modes and where it is not possible to span the near null space with a minimal set of locally supported basis vectors. Further discretization research is needed to understand the resulting trade-offs between accuracy, stability, and ease in solving the associated linear systems.

More Details

Low-order preconditioning of the Stokes equations

Numerical Linear Algebra with Applications

Voronin, Alexey; He, Yunhui; MacLachlan, Scott; Olson, Luke N.; Tuminaro, Raymond S.

A well-known strategy for building effective preconditioners for higher-order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low-order analogs. In this work, we show that high-quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the (Formula presented.) discretization of the Stokes operator as a preconditioner for the (Formula presented.) discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the (Formula presented.) system, our ultimate motivation is to apply algebraic multigrid within solvers for (Formula presented.) systems via the (Formula presented.) discretization, which will be considered in a companion paper.

More Details

KKT preconditioners for pde-constrained optimization with the helmholtz equation

SIAM Journal on Scientific Computing

Kouri, Drew P.; Ridzal, Denis R.; Tuminaro, Raymond S.

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.

More Details

An algebraic sparsified nested dissection algorithm using low-rank approximations

SIAM Journal on Matrix Analysis and Applications

Cambier, Leopold; Chen, Chao; Boman, Erik G.; Rajamanickam, Sivasankaran R.; Tuminaro, Raymond S.; Darve, Eric

We propose a new algorithm for the fast solution of large, sparse, symmetric positive-definite linear systems, spaND (sparsified Nested Dissection). It is based on nested dissection, sparsification, and low-rank compression. After eliminating all interiors at a given level of the elimination tree, the algorithm sparsifies all separators corresponding to the interiors. This operation reduces the size of the separators by eliminating some degrees of freedom but without introducing any fill-in. This is done at the expense of a small and controllable approximation error. The result is an approximate factorization that can be used as an efficient preconditioner. We then perform several numerical experiments to evaluate this algorithm. We demonstrate that a version using orthogonal factorization and block-diagonal scaling takes fewer CG iterations to converge than previous similar algorithms on various kinds of problems. Furthermore, this algorithm is provably guaranteed to never break down and the matrix stays symmetric positive-definite throughout the process. We evaluate the algorithm on some large problems show it exhibits near-linear scaling. The factorization time is roughly \scrO (N), and the number of iterations grows slowly with N.

More Details

A robust hierarchical solver for ill-conditioned systems with applications to ice sheet modeling

Journal of Computational Physics

Chen, Chao; Cambier, Leopold; Boman, Erik G.; Rajamanickam, Sivasankaran R.; Tuminaro, Raymond S.; Darve, Eric

A hierarchical solver is proposed for solving sparse ill-conditioned linear systems in parallel. The solver is based on a modification of the LoRaSp method, but employs a deferred-compression technique, which provably reduces the approximation error and significantly improves efficiency. Moreover, the deferred-compression technique introduces minimal overhead and does not affect parallelism. As a result, the new solver achieves linear computational complexity under mild assumptions and excellent parallel scalability. To demonstrate the performance of the new solver, we focus on applying it to solve sparse linear systems arising from ice sheet modeling. The strong anisotropic phenomena associated with the thin structure of ice sheets creates serious challenges for existing solvers. To address the anisotropy, we additionally developed a customized partitioning scheme for the solver, which captures the strong-coupling direction accurately. In general, the partitioning can be computed algebraically with existing software packages, and thus the new solver is generalizable for solving other sparse linear systems. Our results show that ice sheet problems of about 300 million degrees of freedom have been solved in just a few minutes using 1024 processors.

More Details

MueLu User's Guide

Berger-Vergiat, Luc B.; Glusa, Christian A.; Hu, Jonathan J.; Siefert, Christopher S.; Tuminaro, Raymond S.; Matthias, Mayr M.; Andrey, Prokopenko A.; Tobias, Wiesner T.

This is the official user guide for MUELU multigrid library in Trilinos version 12.13 (Dev). This guide provides an overview of MUELU, its capabilities, and instructions for new users who want to start using MUELU with a minimum of effort. Detailed information is given on how to drive MUELU through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms Finally, readers will find a comprehensive listing of available MUELU options. Any options not documented in this manual should be considered strictly experimental.

More Details

High resolution viscous fingering simulation in miscible displacement using a p-adaptive discontinuous Galerkin method with algebraic multigrid preconditioner

Journal of Computational Physics

Becker, G.; Siefert, C.M.; Tuminaro, Raymond S.; Sun, H.; Valiveti, D.M.; Mohan, A.; Yin, J.; Huang, H.

High resolution simulation of viscous fingering can offer an accurate and detailed prediction for subsurface engineering processes involving fingering phenomena. The fully implicit discontinuous Galerkin (DG) method has been shown to be an accurate and stable method to model viscous fingering with high Peclet number and mobility ratio. In this paper, we present two techniques to speedup large scale simulations of this kind. The first technique relies on a simple p-adaptive scheme in which high order basis functions are employed only in elements near the finger fronts where the concentration has a sharp change. As a result, the number of degrees of freedom is significantly reduced and the simulation yields almost identical results to the more expensive simulation with uniform high order elements throughout the mesh. The second technique for speedup involves improving the solver efficiency. We present an algebraic multigrid (AMG) preconditioner which allows the DG matrix to leverage the robust AMG preconditioner designed for the continuous Galerkin (CG) finite element method. The resulting preconditioner works effectively for fixed order DG as well as p-adaptive DG problems. With the improvements provided by the p-adaptivity and AMG preconditioning, we can perform high resolution three-dimensional viscous fingering simulations required for miscible displacement with high Peclet number and mobility ratio in greater detail than before for well injection problems.

More Details

An algebraic multigrid method for Q2−Q1 mixed discretizations of the Navier–Stokes equations

Numerical Linear Algebra with Applications

Prokopenko, Andrey V.; Tuminaro, Raymond S.

Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily colocated at mesh points. Specifically, we investigate a Q2−Q1 mixed finite element discretization of the incompressible Navier–Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees of freedom (DOFs) are defined at spatial locations where there are no corresponding pressure DOFs. Thus, AMG approaches leveraging this colocated structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity DOF relationships of the Q2−Q1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity DOFs resembles that on the finest grid. To define coefficients within the intergrid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier–Stokes problems.

More Details
Results 1–50 of 170
Results 1–50 of 170