Publications

16 Results
Skip to search filters

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling

Cooper, Scott P.; Elbring, Gregory J.; Jakaboski, Blake E.; Lorenz, John C.; Mani, Seethambal S.; Normann, Randy A.; Rightley, Michael J.; van Bloemen Waanders, Bart G.; Weiss, Chester J.

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

More Details

First high-temperature electronics products survey 2005

Normann, Randy A.

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

More Details

Why well monitoring instruments fail

Normann, Randy A.; Henfling, Joseph A.

This overview is intended to provide the reader with insight into basic reliability issues often confronted when designing long-term geothermal well monitoring equipment. No single system is looked at. General examples of the long-term reliability of other industries are presented. Examples of reliability issues involving electronic components and sensors along with fiber optic sensors and cables are given. This paper will aid in building systems where a long operating life is required. However, as no introductory paper can cover all reliability issues, basic assembly practices and testing concepts are presented.

More Details

Development of high-temperature batteries for use in geothermal and oil/gas boreholes

Transactions - Geothermal Resources Council

Guidotti, Ronald A.; Normann, Randy A.; Reinhardt, Frederick W.; Odinek, Judy G.

The drilling industry continues to drill deeper and hotter wells to support fossil fuel exploration, production and geothermal power production. Natural gas well temperatures in excess of 185°C are becoming increasingly common and geothermal power production wells can reach 350°C. Electronics manufacturers are developing new high-temperature electronic devices capable of operating at 225°C for five years. Most of these components continue to operate up to 300°C. This paper discusses efforts to develop high-temperature batteries to meet the power needs of new high-temperature electronic systems.

More Details

Dewarless Logging Tool - 1st Generation

Henfling, Joseph A.; Normann, Randy A.

This report focuses on Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications without the need for heat shielding. One of the mechanisms for failure in conventional downhole tools is temperature. They can only survive a limited number of hours in high temperature environments. For the first time since the evolution of integrated circuits, components are now commercially available that are qualified to 225 C with many continuing to work up to 300 C. These components are primarily based on Silicon-On-Insulator (SOI) technology. Sandia has developed and tested a simple data logger based on this technology that operates up to 300 C with a few limiting components operating to only 250 C without thermal protection. An actual well log to 240 C without shielding is discussed. The first prototype high-temperature tool measures pressure and temperature using a wire-line for power and communication. The tool is based around the HT83C51 microcontroller. A brief discussion of the background and status of the High Temperature Instrumentation program at Sandia, objectives, data logger development, and future project plans are given.

More Details
16 Results
16 Results