Publications

Results 1–25 of 91
Skip to search filters

Viscoelasticity of glass-forming materials: What about inorganic sealing glasses?

Conference Proceedings of the Society for Experimental Mechanics Series

Chambers, Robert S.; Stavig, Mark E.; Tandon, Rajan T.

Glass forming materials like polymers exhibit a variety of complex, nonlinear, time-dependent relaxations in volume, enthalpy and stress, all of which affect material performance and aging. Durable product designs rely on the capability to predict accurately how these materials will respond to mechanical loading and temperature regimes over prolonged exposures to operating environments. This cannot be achieved by developing a constitutive framework to fit only one or two types of experiments. Rather, it requires a constitutive formalism that is quantitatively predictive to engineering accuracy for the broad range of observed relaxation behaviors. Moreover, all engineering analyses must be performed from a single set of material model parameters. The rigorous nonlinear viscoelastic Potential Energy Clock (PEC) model and its engineering phenomenological equivalent, the Simplified Potential Energy Clock (SPEC) model, were developed to fulfill such roles and have been applied successfully to thermoplastics and filled and unfilled thermosets. Recent work has provided an opportunity to assess the performance of the SPEC model in predicting the viscoelastic behavior of an inorganic sealing glass. This presentation will overview the history of PEC and SPEC and describe the material characterization, model calibration and validation associated with the high Tg (~460 °C) sealing glass.

More Details

Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

Journal of Non-Crystalline Solids

Chambers, Robert S.; Tandon, Rajan T.; Stavig, Mark E.

To analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

More Details

The Compelling Case for Indentation as a Functional Exploratory and Characterization Tool

Journal of the American Ceramic Society

Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Tandon, Rajan T.; Page, Trevor F.; Pharr, George M.; Lawn, Brian R.

The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith-Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic-plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a "standard" machined specimen, are also outlined. Misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.

More Details
Results 1–25 of 91
Results 1–25 of 91