Injection Molded Microfluidic Devices for Homeland Security Applications
Abstract not provided.
Abstract not provided.
Proposed for publication in Biosensors and Bioelectronics.
Abstract not provided.
Abstract not provided.
Microsystems pose unparalleled opportunity in the realm of real-time sample analysis for multiple applications, including Homeland Security monitoring devices, environmental monitoring, and biomedical diagnostics. The need for a universal means of processing, separating, and delivering a sample within these devices is a critical need if these systems are to receive widespread implementation in the industry and government sectors. Efficient particle separation and enrichment techniques are critical for a range of analytical functions including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microdevices and their enhancement through dynamic surface coatings. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor{reg_sign}. We demonstrate that the polymer devices achieve the same performance metrics as glass devices. Additionally, we show that the nonionic block copolymer surfactant Pluronic F127 has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the magnitude of the applied electric field necessary to achieve particle trapping. The presence of these dynamic surface coatings, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that polymeric microfluidic devices with surfactant coatings for insulator-based dielectrophoresis provide an affordable engineering strategy for selective particle enrichment and sorting.
Abstract not provided.
This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.
Micro Total Analysis Systems - Proceedings of MicroTAS 2006 Conference: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences
We have developed a bioparticle detection platform which combines insulatorbased dielectrophoretic (iDEP) concentration with impedance feedback. The system continuously and selectively accumulates particles while electrical responses of the suspension at the trapping site are recorded. The operating conditions for trapping are determined by the physical and electrical properties of the target particle type. Recordings of phase offset, relative to the reference sensing signal, act as the principal monitoring indicators. These measurements enable us to detect the presence and the approximate concentration of biological contaminants in a sample. This study is the first to illustrate the potential of iDEP concentration in conjunction with impedance measurements. The results obtained from fluorescent beads and viable B. subtilis spores demonstrate the feasibility of using iDEP concentration with active impedance monitoring to detect biological pathogens collected from dilute samples. © 2006 Society for Chemistry and Micro-Nano Systems.
Bioelectrochemistry
Abstract not provided.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor® 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.
Proposed for publication in the Lab On A Chip.
Abstract not provided.
Abstract not provided.
This article provides a brief review of the field of electroporation and introduces a new microdevice that facilitates studies to test theories, gain understanding, and control this important biomedical technology. Electroporation, a bio-electrochemical process whose fundamentals are not yet understood, is a means of permeating the cell membrane by applying a voltage across the cell and forming nano-scale pores in the membrane. It has become an important field in biotechnology and medicine for the controlled introduction of macromolecules, such as gene constructs and drugs, into various cells. It is viewed as an engineering alternative to biological techniques for the genetic engineering of cells. To study and control electroporation, we have created a low-cost microelectroporation chip that incorporates a live biological cell with an electric circuit. The device revealed an important behavior of cells in electrical fields. They produce measurable electrical information about the electroporation state of the cell that may enable precise control of the process. The device can be used to facilitate fundamental studies of electroporation and can become useful in providing precise control over biotechnological processes.
We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor{reg_sign} 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a biological pathogen simulants. These include spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented and demonstrated here a methodology to determine the concentration factors obtained in these devices.
Abstract not provided.