Development of Copper Oxide Based Cathodes for Rechargeable Zinc Alkaline Batteries
Abstract not provided.
Abstract not provided.
ACS Applied Energy Materials
Resurrecting a battery chemistry thought to be only primary, we demonstrate the first example of a rechargeable alkaline zinc/copper oxide battery. With the incorporation of a Bi2O3additive to stabilize the copper oxide-based conversion cathode, Zn/(CuO-Bi2O3) cells are capable of cycling over 100 times at >124 W h/L, with capacities from 674 mA h/g (cycle 1) to 362 mA h/g (cycle 150). The crucial role of Bi2O3in facilitating the electrochemical reversibility of Cu2O, Cu(OH)2, and Cuowas supported by scanning and transmission electrochemical microscopy, cyclic voltammetry, and rotating ring-disc electrode voltammetry and monitoredvia operandoenergy-dispersive X-ray diffraction measurements. Bismuth was identified as serving two roles, decreasing the cell resistance and promoting Cu(I) and Cu(II) reduction. To mitigate the capacity losses of long-term cycling CuO cells, we demonstrate two limited depth of discharge (DOD) strategies. First, a 30% DOD (202 mA h/g) retains 99.9% capacity over 250 cycles. Second, the modification of the CuO cathode by the inclusion of additional Cu metal enables performance at very high areal capacities of ∼40 mA h/cm2and unprecedented energy densities of ∼260 W h/L, with near 100% Coulombic efficiency. This work revitalizes a historically primary battery chemistry and opens opportunity to future works in developing copper-based conversion cathode chemistries for the realization of low-cost, safe, and energy-dense secondary batteries.
Abstract not provided.
Abstract not provided.