Publications

116 Results
Skip to search filters

Re-evaluation of U.S. DOE R&D efforts for generic deep geologic repositories - Roadmap update

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Sevougian, S.D.; Hammond, Glenn E.; Mariner, Paul M.; MacKinnon, R.J.; Swift, Peter N.; Rogers, R.D.; Dobson, D.C.; Tynan, M.C.

R&D addressing the disposal of commercial spent nuclear fuel in the U.S. is currently generic (i.e., “non-site-specific”) in scope. However, to prepare for the eventuality of a repository siting process, the former Used Fuel Disposition (UFD) Campaign of the Nuclear Energy (NE) Office of the U.S. DOE formulated an R&D Roadmap in 2012 outlining generic R&D activities and their priorities appropriate for developing safety cases and associated performance assessment (PA) models for deep geologic repositories in several potential host-rock environments in the contiguous United States. This 2012 UFD Roadmap identified the importance of re-evaluating priorities in future years as knowledge is gained from the DOE's ongoing R&D activities. Since 2012, significant knowledge has been gained from these activities through R&D in the U.S. and via international collaborations, especially with countries that operate underground research laboratories (URLs). The 2019 R&D Roadmap Update, introduced here, summarizes the progress of ongoing R&D activities, re-assesses R&D priorities, and identifies new activities of high priority, such as R&D on disposal of DPCs (dual purpose canisters), which now contain a significant fraction of the Nation's spent fuel activity.

More Details

Technology readiness assessment process adapted to geologic disposal of HLW/SNF

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Sevougian, S.D.; MacKinnon, R.J.

Technology Readiness Assessment (TRA) is a formal process to aid in defining the remaining R&D needed to bring a new, complex technology system to full technical maturity. A geologic repository for high-level radioactive waste is a prototypical complex system, comprised of novel technologies and complex environmental conditions, but because it is intended to function passively and is comprised of both engineered and geologic barriers, the standard, engineered-system ("hardware") TRA process must be modified. Longstanding precedence employs a Safety Case (or Licensing Case) as the preferred vehicle for assembling all facets of knowledge to make a determination of repository system safety and deployment readiness. However, certain modifications to the established TRA process allow it to be applied advantageously in conjunction with the Safety Case. In particular, an adaptation of the established Features, Events, and Processes (FEPs) methodology can serve as a basis for a "TRA-like" maturity evaluation for various major components and subsystems of a deep geologic repository. The newly proposed Knowledge Readiness Assessment (KRA) process combines the best of both methodologies, i.e., of FEPs analysis and standard TRA evaluation, for establishing confidence in the post-closure performance of major repository components and subsystems.

More Details

Deep Borehole Disposal Safety Analysis

Freeze, Geoffrey A.; Stein, Emily S.; Price, Laura L.; MacKinnon, R.J.; Tillman, Jackie B.

This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

More Details

Deep Borehole Field Test Laboratory and Borehole Testing Strategy

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W.P.; Sevougian, Stephen D.; Bryan, Charles R.; Jang, Jay J.; Stein, Emily S.; Bauer, Stephen J.; Daley, Tom D.; Freifeld, Barry M.; Birkholzer, Jens T.; Spane, Frank A.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

More Details

A Control Variate Method for Probabilistic Performance Assessment. Improved Estimates for Mean Performance Quantities of Interest

MacKinnon, R.J.; Kuhlman, Kristopher L.

We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application to probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.

More Details

The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network

MacKinnon, R.J.

Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

More Details

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu H.; Sevougian, Stephen D.; Birkholzer, Jens T.; Freifeld, Barry M.; Daley, Tom D.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

Field-scale Thermal Testing in a Generic Salt Disposal Environment Underground Research Laboratory (URL): Delineation of Principal Purpose Objectives and Hypotheses

Sassani, David C.; Hardin, Ernest H.; Kuhlman, Kristopher L.; MacKinnon, R.J.

The amount of brine present in domal salt formation is far less than in bedded salts (e.g., 0.01 to 0.1% compared with 1 to 3%). In salt domes, shear deformation associated with diapirism has caused existing brine to coalesce, leading to flow and expulsion. Brine migration behavior was investigated in bedded salt at WIPP (Nowak and McTigue 1987, SAND87-0880), and in domal salt at Asse (Coyle et al. 1987, BMI/ONWI-624). Test methods were not standardized, and the tests involved large diameter boreholes (17 to 36 in. diameter) and large apparatus. The tested intervals were proximal to mined openings (within approximately 1 diameter) where in situ stresses are redistributed due to excavation. The tests showed that (1) brine inflow rates can range over at least 2 orders of magnitude for domal vs. bedded salt, (2) that brine inflow is strongly associated with clay and interbedded permeable layers in bedded salt, and (3) that measurement systems can readily collect very small quantities of moisture over time frames of 2 years or longer. Brine inflow rates declined slightly with time in both test series, but neither series approached a state of apparent depletion. This range of flow magnitude could be significant to repository design and performance assessment, especially if inflow rates can be predicted using stratigraphic and geomechanical inputs, and can be shown to approach zero in a predictable manner.

More Details

Update on the United States Department of Energy's Used Fuel Disposition R&D Campaign

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Swift, Peter N.; Birkholzer, Jens T.; Bragg-Sitton, Shannon; MacKinnon, R.J.; McMahon, Kevin A.; Saltzstein, Sylvia J.; Sorenson, Ken B.

The United States Department of Energy (DOE) is conducting research and development (R&D) activities within the Used Fuel Disposition Campaign to support the implementation of the DOE's 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. R&D activities focus on storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles and are ongoing at nine national laboratories. Additional relevant R&D is conducted at multiple universities through the DOE's Nuclear Energy University Program. Within the storage and transportation areas, R&D continues to focus on technical gaps related to extended storage and subsequent transportation of UNF. Primary emphasis for FY15 is on experimental and analysis activities that support the DOE s dry cask demonstration confirmatory data project initiated at the North Anna Nuclear Power Plant in Virginia by the Electric Power Research Institute in collaboration with AREVA and Dominion Power. Within the disposal research area, current planning calls for a significant increase in R&D associated with evaluating the feasibility of deep borehole disposal of some waste forms, in addition to a continued emphasis on confirming the viability of generic mined disposal concepts in multiple geologic media. International collaborations that allow the U.S. program to benefit from experience and opportunities for research in other nations remain a high priority.

More Details

Research needs for deep boreholes

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Brady, Patrick V.; Arnold, Bill W.; MacKinnon, R.J.; Hardin, Ernest H.; Sassani, David C.; Kuhlman, Kristopher L.; Freeze, Geoffrey A.

While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.

More Details

Update of the Used Fuel Dispositon Campaign Implementation Plan

McMahon, Kevin A.; Bragg-Sitton, Shannon B.; MacKinnon, R.J.; Saltzstein, Sylvia J.; Sorenson, Ken B.; Swift, Peter N.; Birkholzer, Jens T.

This Update to the Used Fuel Disposition Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program, building on work completed in this area since 2009. This implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclearfuel- and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to available funding and progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

More Details

Potential impacts of alternative waste forms on long-term performance of geological repositories for radioactive waste

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Hansen, Clifford H.; Swift, Peter N.; Hardin, Ernest H.; MacKinnon, R.J.; Sassani, David C.; Sevougian, S.D.

Published results of performance assessments for deep geologic disposal of high-level radioactive waste and spent nuclear fuel provide insight into those aspects of the waste form that are potentially important to the long-term performance of a repository system. Alternative waste forms, such as might result from new technologies for processing spent fuel and advances in nuclear reactor design, have the potential to affect the long-term performance of a geologic repository. This paper reviews relevant results of existing performance assessments for a range of disposal concepts and provides observations about how hypothetical modifications to waste characteristics (e.g., changes in radionuclide inventory, thermal loading, and durability of waste forms) might impact results of the performance assessment models. Disposal concepts considered include geologic repositories in both saturated and unsaturated environments. Specifically, we consider four recent performance assessments as representative of a range of disposal concepts. We examine the extent to which results of these performance assessments are affected by (i) thermal loading of the waste proposed for disposal; (ii) mechanical and chemical lifetime of the waste form; and (iii) radionuclide content of the waste. We find that peak subsurface temperature generally is a constraint that can be met through engineering solutions and that processing of wastes to reduce thermal power may enable more efficient use of repositories rather than improved repository performance. We observe that the rate of radionuclide release is often limited by geologic or chemical processes other than waste form degradation. Thus, the effects on repository performance of extending waste-form lifetime may be relatively small unless the waste form lifetime becomes sufficiently long relative to the period of repository performance. Finally, we find that changes to radionuclide content of waste (e.g., by separation or transmutation processes) do not in general correspond to proportional effects on repository performance. Rather, the effect of changes to radionuclide content depends on the relative mobility of various radionuclides through the repository system, and consequently on repository geology and geochemistry.

More Details

Summary of the total system performance assessment for the Yucca Mountain license application

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Hansen, Clifford W.; Knowles, M.K.; MacKinnon, R.J.; McNeish, Jerry A.; Sevougian, S.D.; Swift, Peter N.

The Department of Energy's 2008 Yucca Mountain Performance Assessment represents the culmination of more than two decades of analyses of post-closure repository performance in support of programmatic decision making for the proposed Yucca Mountain repository. The 2008 performance assessment summarizes the estimated long-term risks to the health and safety of the public resulting from disposal of spent nuclear fuel and high-level radioactive waste in the proposed Yucca Mountain repository. The standards at 10 CFR Part 63 request several numerical estimates quantifying performance of the repository over time. This paper summarizes the key quantitative results from the performance assessment and presents uncertainty and sensitivity analyses for these results.

More Details

Water availability inside proposed Yucca mountain repository breached waste packages

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Wang, Yifeng; Jove Colon, Carlos F.; Lord, Michael E.; Mattie, Patrick D.; MacKinnon, R.J.

We present a model to evaluate the water mass balance inside a breached waste package in Yucca Mountain (YM) repository environments. The amount of water as liquid or vapor that can accumulate inside or percolate through the package in the emplacement drift is modeled as a function of the temperature and relative humidity (RH) near the waste package, the dripping rate of water from seepage, the area of failure patches on the waste package, and the extent of waste degradation. The water activity inside the waste package is assumed to be determined by both matric and osmotic potentials in the porous waste degradation products that also includes hygroscopic salts. We implemented the model and conducted a set of Monte Carlo simulations to gain insight into the variability and uncertainty associated with model predictions. The model shows that water vapor diffusion can be as important as the advective seepage flow. In addition, chemical reactions during waste degradation can consume a significant fraction of water accumulated in the waste package.

More Details

Implementation of localized corrosion in the performance assessment model for Yucca Mountain

Nuclear Technology

Sevougian, S.D.; Jain, Vivek; MacKinnon, R.J.; Mattie, Patrick D.; Mon, Kevin G.; Bullard, Bryan E.

A total system performance assessment (TSPA) model has been developed to analyze the ability of the natural and engineered barriers of the Yucca Mountain repository to isolate nuclear waste over the period following repository closure. The principal features of the engineered barrier system are emplacement tunnels (or "drifts") containing a two-layer waste package (WP) for waste containment and a titanium drip shield to protect the WP from seeping water and falling rock. The 25-mm-thick outer shell of the WP is composed of Alloy 22, a highly corrosion-resistant nickel-based alloy. There are five nominal degradation modes of the Alloy 22: general corrosion, microbially influenced corrosion, stress corrosion cracking, early failure due to manufacturing defects, and localized corrosion (LC). This paper specifically examines the incorporation of the Alloy 22 LC model into the Yucca Mountain TSPA model, particularly the abstraction and modeling methodology, as well as issues dealing with scaling, spatial variability, uncertainty, and coupling to other submodels that are part of the total system model, such as the submodel for seepage water chemistry.

More Details

Representation of two-phase flow in the vicinity of the repository in the 1996 performance assessment for the waste isolation pilot plant

Reliability Engineering and System Safety

Vaughn, P.; Bean, I.E.; Helton, J.C.; Lord, M.E.; MacKinnon, R.J.; Schreiber, J.D.

The following topics related to the representation of two-phase (i.e. gas and brine) flow in the vicinity of the repository in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are discussed: (i) system of nonlinear partial differential equations used to model two-phase flow; (ii) incorporation of repository shafts into model; (iii) creep closure of repository; (iv) interbed fracturing; (v) gas generation; (vi) capillary action in waste; (vii) borehole model; (viii) numerical solution; and (ix) gas and brine flow across specified boundaries. Two-phase flow calculations are a central part of the 1996 WIPP PA and supply results that are subsequently used in the calculation of releases to the surface at the time of a drilling intrusion (i.e. spallings, direct brine releases) and long-term releases due to radionuclide transport by flowing groundwater.

More Details

Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Undisturbed conditions

Reliability Engineering and System Safety

Helton, J.C.; Bean, I.E.; Economy, K.; Garner, J.W.; MacKinnon, R.J.; Miller, J.; Schreiber, J.D.; Vaughn, P.

Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented for two-phase flow in the vicinity of the repository under undisturbed conditions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation, repository pressure, brine saturation, and brine and gas outflow. Of the variables under study, repository pressure is potentially the most important due to its influence on spallings and direct brine releases, with the uncertainty in its value being dominated by the extent to which the microbial degradation of cellulose takes place, the rate at which the corrosion of steel takes place, and the amount of brine that drains from the surrounding disturbed rock zone into the repository.

More Details

Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Disturbed conditions

Reliability Engineering and System Safety

Helton, J.C.; Bean, I.E.; Economy, K.; Garner, J.W.; MacKinnon, R.J.; Miller, J.; Schreiber, J.D.; Vaughn, P.

Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are presented for two-phase flow in the vicinity of the repository under disturbed conditions resulting from drilling intrusions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation, repository pressure, brine saturation, and brine and gas outflow. Of the variables under study, repository pressure and brine flow from the repository to the Culebra Dolomite are potentially the most important in PA for the WIPP. Subsequent to a drilling intrusion, repository pressure was dominated by borehole permeability and generally below the level (i.e. 8 MPa) that could potentially produce spallings and direct brine releases. Brine flow from the repository to the Culebra Dolomite tended to be small or nonexistent, with its occurrence and size also dominated by borehole permeability.

More Details
116 Results
116 Results