Publications

31 Results
Skip to search filters

Characterization of multi-regime reaction zones in a piloted inhomogeneous jet flame with local extinction

Proceedings of the Combustion Institute

Barlow, R.S.; Hartl, S.; Hasse, C.; Cutcher, H.C.; Masri, A.R.

Gradient free regime identification (GFRI) is applied to 1D Raman/Rayleigh/LIF measurements of temperature and major species from the intermediate velocity case of the Sydney piloted inhomogeneous jet flame series to better understand the structure of reaction zones and the downstream evolution of multi-regime characteristics. The GFRI approach allows local reaction zones to be detected and characterized as premixed, dominantly premixed, multi-regime, dominantly non-premixed, or non-premixed flame structures, based on flame markers (mixture fraction, chemical mode, and heat release rate) derived from the experimental data. The statistics of chemical mode zero-crossings, which mark premixed reaction zones, and the relative populations of flame structures are shown to be sensitive to the state of mixing in the near field of the flame and to the level of local extinction farther downstream. Multi-regime structures, where premixed and non-premixed reaction zones occur in close proximity and both contribute to overall heat release, account for nearly half the total population at streamwise locations within the first several jet diameters. There is a rapid transition within the near field whereby the relative population of non-premixed and dominantly non-premixed structures grows from 0.05 to nearly 0.5, and the population of premixed and dominantly premixed structures decreases correspondingly as fluid entering the reaction zone becomes progressively fuel-rich. Local extinction and re-ignition bring a resurgence in premixed-type structures, many of which occur at fuel-lean conditions. There are also modest populations of multi-regime structures, having chemical mode zero-crossings at lean conditions, which would not exist in a fully burning jet flame.

More Details

Spontaneous Raman-LIF-CO-OH measurements of species concentration in turbulent spray flames

Proceedings of the Combustion Institute

Dunn, M.J.; MacFarlane, A.R.W.; Barlow, R.S.; Geyer, D.; Dieter, K.; Masri, A.R.

This paper presents new measurements of species concentrations, temperature and mixture fraction in selected regions of a turbulent ethanol spray flame. The line-Raman-LIF-CO-OH setup developed at the Sandia's Combustion Research Facility is utilised to probe regions of a spray flame where laser breakdown of liquid droplets is avoided and the remaining interferences can be corrected. The spray flame is stabilised on the piloted Sydney needle spray burner, where axial translation of the liquid injecting needle in the air-blast stream can transition the spray from dilute to dense. The solution to obtaining successful measurements is found to be multifaceted and includes: the appropriate selection of flame conditions; high sensitivity of the Raman detection system permitting reduced laser energies; development of a pre-processing algorithm to reject strong droplet interferences; and application of the hybrid matrix inversion method combined with wavelet denoising to account for interference corrections and noise at the very low signal levels obtained. Unique and necessary for the successful measurements reported in this paper, a pre-processing algorithm is outlined that removes data points corrupted with strong interferences from droplets. These interferences arise from a range of sources, but the most intense are due to the laser interaction with surrounding mist or liquid fragments, such that measurements near the jet centreline are corrupted and hence discarded. Reliable measurements of mixture fraction, temperature obtained from the sum of the species number densities, and species mole fractions are reported for regions in the flames sufficiently far from the centreline. The paper demonstrates the feasibility of the judicious use of Raman scattering in turbulent spray flames, the results of which will be extremely useful for validating numerical simulations.

More Details

Assessing an experimental approach for chemical explosive mode and heat release rate using DNS data

Combustion and Flame

Hartl, Sandra; Geyer, Dirk; Hasse, Christian; Zhao, X.; Wang, H.; Barlow, R.S.

Obtaining information about burning characteristics and flame structures by analyzing experimental data is an important issue for understanding combustion processes and pursuing combustion modeling approaches. It has been shown that Raman/Rayleigh measurements of major species and temperature can be used to approximate the local heat release rate and the chemical explosive mode, and that these results are sufficiently accurate for a qualitative assessment of the relative importance of different heat release zones within the same overall flame structure in laminar and mildly turbulent partially premixed flames [1,2]. The present study uses data from direct numerical simulation (DNS) to extend and quantify the understanding of the approximation method with respect to premixed and stratified-premixed flames with significant turbulence–chemistry interaction (high Karlovitz number). The accuracy of the approximation procedure is assessed as previously applied, using just major species and temperature, as well as with the OH radical included as an additional experimentally accessible species. The accuracy of the local chemical explosive mode and the local heat release rate results from the approximation are significantly improved with OH included, yielding quantitative agreement with the DNS results. Further, a global sensitivity analysis is applied to identify the sensitivity of the heat release rate and chemical explosive mode to experimental uncertainties imprinted upon the DNS data prior to the approximation procedure.

More Details

Assessing the relative importance of flame regimes in Raman/Rayleigh line measurements of turbulent lifted flames

Proceedings of the Combustion Institute

Hartl, S.; Van Winkle, R.; Geyer, D.; Dreizler, A.; Magnotti, G.; Hasse, C.; Barlow, R.S.

Understanding and quantifying the relative importance of premixed and non-premixed reaction zones within turbulent partially premixed flames is an important issue for multi-regime combustion. In the present work, the recently-developed method of gradient-free regime identification (GFRI) is applied to instantaneous 1D Raman/Rayleigh measurements of temperature and major species from two turbulent lifted methane/air flames. Local premixed and non-premixed reaction zones are identified using criteria based on the mixture fraction, the chemical explosive mode, and the heat release rate, the latter two being calculated from an approximation of the full thermochemical state of each measured sample. A chemical mode (CM) zero-crossing is a previously documented marker for a premixed reaction zone. Results from the lifted flames show strong correlations among the mixture fraction at the CM zero-crossing, the magnitude of the change in CM at the zero-crossing, and the local heat release rate at the CM zero-crossing compared to the maximum heat release rate. The trends are confirmed through a comparable analysis of numerical simulations of two laminar triple flames. These newly documented trends are associated with the transition from dominantly premixed flame structures to dominantly non-premixed flames structures. The methods introduced for assessing the relative importance of local premixed and non-premixed reactions zones have potential for application to a broad range of turbulent flames.

More Details

Modeling stratified flames with and without shear using multiple mapping conditioning

Proceedings of the Combustion Institute

Straub, C.; Kronenburg, A.; Stein, O.T.; Barlow, R.S.; Geyer, D.

A stochastic sparse particle approach is coupled with an artificial thickening flame (ATF) model for large eddy simulations (LES) to predict a series of turbulent premixed-stratified flames with and without shear and stratification. The thickened reaction progress variable serves as reference variable for the multiple mapping conditioning (MMC) mixing model which emulates turbulent mixing of the stochastic particles. The key feature of MMC is to enforce localness in this reference space when particle pairs are mixed and prevents unphysical mixing of burnt and unburnt fluid across the flame front. We apply MMC-ATF to three flames of a series of turbulent stratified flames and validate the method by comparison with experimental data. The new measurements feature increased accuracy in comparison to previously published data of the same flames due to a better signal-to-noise ratio and a setup which is less prone to beam steering. All flame locations are well predicted by the LES-ATF approach and an analysis of the MMC particle statistics demonstrates that MMC preserves the flamelet-like behaviour in regions where the experiments show low scatter around the flamelet solution. Predicted (local) deviations from the flamelet-solution are comparable to deviations observed in the measurements and variations in the flame structure due to differences in stratification and shear are reasonably well captured by the method.

More Details

Structure of a stratified CH4 flame with H2 addition

Proceedings of the Combustion Institute

Schneider, Silvan S.; Geyer, Dirk G.; Magnotti, Gaetano M.; Dunn, Matthew J.; Barlow, R.S.; Dreizler, Andreas D.

To explore the effect of H2 addition (20 percent by volume) on stratified-premixed methane combustion in a turbulent flow, an experimental investigation on a new flame configuration of the Darmstadt stratified burner is conducted here. Major species concentrations and temperature are measured with high spatial resolution by 1D Raman-Rayleigh scattering. A conditioning on local equivalence ratio (range from φ = 0.45 to φ = 1.25) and local stratification is applied to the large dataset and allows to analyze the impact of H2 addition on the flame structure. The local stratification level is determined as Δφ/ΔT at the location of maximum CO mass fraction for each instantaneous flame realization. Due to the H2 addition, preferential diffusion of H2 is different than in pure methane flames. In addition to diffusing out of the reaction zone where it is formed, particularly in rich conditions, H2 also diffuses from the cold reactant mixture into the flame front. For rich conditions (φ = 1.05 to φ = 1.15) H2 mass fractions are significantly elevated within the intermediate temperature range compared to fully-premixed laminar flame simulations. This elevation is attributed to preferential transport of H2 into the rich flame front from adjacent even richer regions of the flow. Additionally, when the local stratification across the flame front is taken into account, it is revealed that the state-space relation of H2 is not only a function of the local stoichiometry but also the local stratification level. In these flames H2 is the only major species showing sensitivity of the state-space relation to an equivalence ratio gradient across the flame front.

More Details

Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon-air flames

Proceedings of the Combustion Institute

Magnotti, G.; Barlow, R.S.

Dual-resolution Raman spectroscopy is a novel diagnostics technique for measurements of temperature and species in flames where multiple hydrocarbons are present. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species .g. N2 O2 H2O CO2 CO H2 and DME) and major combustion intermediates including CH4 CH2O C2H2 C2H4 and C2H6 in DME-air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions were assessed through a series of measurements in laminar Bunsen-burner flames and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The first Raman measurements of up to twelve species in hydrocarbon flames and the first quantitative Raman measurements of formaldehyde in flames are presented. The accuracy and precision of the instrument were determined from measurements in laminar flames and the applicability of the instrument to turbulent DME-air flames is discussed.

More Details

Thirteenth International Workshop on Measurement and Computation of Turbulent Flames (TNF2016)

Barlow, R.S.

The TNF Workshop series was initiated in 1996 to address validation of RANS based models for turbulent nonpremixed flames and partially-premixed flames where combustion occurs mainly in a diffusion flame mode. The emphasis has been on fundamental issues of turbulence-chemistry interactions in flames that are relatively simple in terms of both geometry and chemistry. Although the TNF acronym has been retained, the word nonpremixed has been dropped from the title, and our scope has expanded (since TNF9 Montreal, 2008).

More Details

Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments

Barlow, R.S.

Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

More Details

Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames

Proceedings of the Combustion Institute

Barlow, R.S.; Wang, G.H.; Anselmo-Filho, P.; Sweeney, M.S.; Hochgreb, S.

Stratified flames are common in practical combustion systems. However, relatively little is known about the detailed structure of turbulent stratified flames. Multiscalar laser diagnostics, consisting of simultaneous line imaging of Raman scattering, Rayleigh scattering, and two-photon laser-induced fluorescence (LIF) of CO, combined with crossed planar imaging of OH LIF, are applied to turbulent premixed and stratified CH4/air flames stabilized above a slot burner. A new detection system for the line-imaged measurements allows a pixel resolution of 0.104 mm in the results for temperature, major species concentrations, and the local equivalence ratio. Results from premixed flames demonstrate that this diagnostic system is capable of resolving the internal structure of stratified flames at atmospheric pressure. In particular, the local equivalence ratio and the gradient in temperature are measured with good accuracy on a single-shot basis. Results from stratified flames reveal a broad range of instantaneous conditions, and show that significant gradients in equivalence ratio can occur within the instantaneous thermal thickness of turbulent stratified flames. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Scalar filtered mass density functions in nonpremixed turbulent jet flames

Combustion and Flame

Drozda, Tomasz D.; Wang, Guanghua H.; Sankaran, Vaidyanathan S.; Mayo, Jackson M.; Oefelein, Joseph C.; Barlow, R.S.

Filtered mass density functions (FMDFs) of mixture fraction and temperature are studied by analyzing experimental data obtained from one-dimensional Raman/Rayleigh/LIF measurements of nonpremixed CH4/H2/N2 turbulent jet flames at Reynolds numbers of 15,200 and 22,800 (DLR-A and -B). The experimentally determined FMDFs are conditioned on the Favré filtered values of the mixture fraction and its variance. Filter widths are selected as fixed multiples of the experimentally determined dissipation length scale at each measurement location. One-dimensional filtering using a top-hat filter is performed to obtain the filtered variables used for conditioning. The FMDFs are obtained by binning the mass and filter kernel weighted samples. Emphasis is placed on the shapes of the FMDFs in the fuel-rich, fuel-lean, and stoichiometric intervals for the Favré filtered mixture fraction, and low, medium, and high values for the Favré filtered mixture fraction variance. It is found that the FMDFs of mixture fraction are unimodal in samples with low mixture fraction variance and bimodal in samples with high variance. However, the FMDFs of mixture fraction at the smallest filter size studied are unimodal for all values of the variance. The FMDFs of temperature are unimodal in samples with low mixture fraction variance, and either unimodal or bimodal, depending on the mixture fraction mean, in samples with high variance. The influence of the filter size and the jet Reynolds number on the FMDFs is also considered. © 2008 The Combustion Institute.

More Details

A system model for assessing scalar dissipation measurement accuracy in turbulent flows

Measurement Science and Technology

Barlow, R.S.; Wang, G.H.

In this paper, a system model is developed to investigate independent and coupled effects of resolution, noise and data processing algorithms on the accuracy of the scalar gradient and dissipation measurements in turbulent flows. Finite resolution effects are simulated by spectral filtering, noise is modelled as an additive source in the model spectrum and differencing stencils are analysed as digital filters. In the current study, the effective resolution is proposed to be a proper criterion for quantifying the resolution requirement for scalar gradient and dissipation measurement. Both effective resolution and noise-induced apparent dissipation are mainly determined by the system transfer function. The finite resolution results, based upon a model scalar energy spectrum, are shown to agree with non-reacting experimental data. The coupled resolution-noise results show three regions in the mean scalar dissipation rate measurement: noise-dominated region, noise-resolution correlated region and resolution-dominated region. Different noise levels lead to different resolution error curves for the measured mean scalar dissipation rate. Experimental procedures and guidelines to improve the scalar gradient and dissipation experiments are proposed, based on these model study results. Finally, the proposed system approach can also be applied to other derived quantities involving complex transfer functions.

More Details

Quantification of resolution and noise effects on thermal dissipation measurements in turbulent non-premixed jet flames

Proceedings of the Combustion Institute

Wang, G.H.; Barlow, R.S.; Clemens, N.T.

One-dimensional (1-D) line Rayleigh thermometry is used to investigate the effects of spatial resolution and noise on thermal dissipation in turbulent non-premixed CH4/H2/N2 jet flames. The high signal-tonoise ratio and spatial resolution of the measured temperature field enables determination of the cutoff wavenumber in the 1-D temperature dissipation spectrum obtained at each flame location. The local scale inferred from this cutoff is analogous to the Batchelor scale in nonreacting flows. At downstream locations in the flames studied here, it is consistent with estimates of the Batchelor scale based on the scaling laws using local Reynolds numbers. The spectral cutoff information is used to design data analysis schemes for determining mean thermal dissipation. Laminar flame measurements are used to characterize experimental noise and correct for the noise-induced apparent dissipation in the turbulent flame results. These experimentally determined resolution and noise correction techniques are combined to give measurements of the mean thermal dissipation that are essentially fully resolved and noise-free. The prospects of using spectral results from high-resolution 1-D Rayleigh imaging measurements to design filtering schemes for Raman-based measurements of mixture fraction dissipation are also discussed.

More Details

Experimental study of scalar filtered mass density function in turbulent partially premixed flames

Proceedings of the Combustion Institute

Wang, Danhong; Tong, Chenning; Barlow, R.S.; Karpetis, A.N.

The mixture fraction filtered mass density function (FMDF) used in large eddy simulation (LES) of turbulent combustion is studied experimentally using line images obtained in turbulent partially premixed methane flames (Sandia flames D and E). Cross-stream filtering is employed to obtain the FMDF and other filtered variables. The means of the FMDF conditional on the subgrid-scale (SGS) scalar variance at a given location are found to vary from close to Gaussian to bimodal, indicating well-mixed and non-premixed SGS mixing regimes, respectively. The bimodal SGS scalar has a structure (ramp-cliff) similar to the counter-flow model for laminar flamelets. Therefore, while the burden on mixing models to predict the well-mixed SGS scalar is expected to lessen with decreasing filter scale, the burden to predict the bimodal one is not. These SGS scalar structures can result in fluctuations of the SGS flame structure between distributed reaction zones and laminar flamelets, but for reasons different from the scalar dissipation rate fluctuations associated with the turbulence cascade. Furthermore, the bimodal SGS scalar contributes a significant amount of the scalar dissipation in the reaction zones, highlighting its importance and the need for mixing models to predict the bimodal FMDFs. © 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Piloted methane/air jet flames: Transport effects and aspects of scalar structure

Combustion and Flame

Barlow, R.S.; Frank, J.H.; Karpetis, A.N.; Chen, J.Y.

Previously unpublished results from multiscalar point measurements in the series of piloted CH4/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details
31 Results
31 Results