Publications

6 Results
Skip to search filters

What is Water's Role in a Carbon Neutral Future? A Summary of Findings from a Webinar Series

Gunda, Thushara G.; Ferencz, Stephen B.; Hora, Priya I.; Kuzio, Stephanie P.; Wulfert, Kailey P.

There has been ever-growing interest and engagement regarding net-zero and carbon neutrality goals, with many nations committing to steep emissions reductions by mid-century. Although water plays critical roles in various sectors, there has been a distinct gap in discussions to date about the role of water in the transition to a carbon neutral future. To address this need, a webinar was convened in April 2022 to gain insights into how water can support or influence active strategies for addressing emissions activities across energy, industrial, and carbon sectors. The webinar presentations and discussions highlighted various nuances of direct and indirect water use both within and across technology sectors (Figure ES-1). For example, hydrogen and concrete production, water for mining, and inland waterways transportation are all heavily influenced by the energy sources used (fossil fuels vs. renewable sources) as well as local resource availabilities. Algal biomass, on the other hand, can be produced across diverse geographies (terrestrial to sea) in a range of source water qualities, including wastewater and could also support pollution remediation through nutrient and metals recovery. Finally, water also influences carbon dynamics and cycling within natural systems across terrestrial, aquatic, and geologic systems. These dynamics underscore not only the critical role of water within the energy-water nexus, but also the extension into the energy-watercarbon nexus.

More Details

Analysis Report documenting the Assessment of the Solubility of Lead, EDTA and other Organic Ligands in non-Sulfide systems performed under TP 08-02 and under TP 20-01

Jang, Jay J.; Hora, Priya I.; Kirkes, Leslie D.; Miller, Chammi S.; Zhang, Luzheng Z.

The objective of this report is to accept or reject the hypothesis that the experiments conducted under TP 08-02 Revision 0 (Ismail et al., 2008) were affected by CO2(g) intrusion and sample contamination. The test of the hypothesis is accomplished by comparing the experimental data collected under the protocols of TP 08-02 Revision O and TP 20-01 Revision O (Kirkes and Zhang, 2020). The protocols of TP 20-01 Revision 0 minimize the possibilities of CO2(g) intrusion and sample contamination. The experimental data sets obtained under both TPs will be assessed statistically to see if they are identical or not.

More Details

Analysis Report documenting Solubility and Complexation of Iron, Lead, Magnesium, Neodymium, and Boron in the WIPP-Relevant Brines under TPs 06-03, 08-02, 12-02, 14-03, 14-05, 16-02, 19-01, and 20-01

Jang, Jay J.; Hora, Priya I.; Kirkes, Leslie D.; Miller, Chammi S.; Zhang, Luzheng Z.

This report analyzes experimental data from Test Plans TP 08-02, TP 12-02, and TP 20-01 to add new log K values and Pitzer interaction parameters for Fe, Pb, Mg, Nd and B reactions to the WIPP geochemical thermodynamic database, data0.fm 1.

More Details

Analysis Report for Determination of pH Correction Factors for Brines under AP-157 Rev.1

Kirkes, Leslie D.; Jang, Jay J.; Hora, Priya I.; Miller, Chammi S.; Zhang, Luzheng Z.; Jackson, Ryan S.; Arnold, Randall L.; Nielsen, Shelly R.; Triventi, Antonio T.

This Analysis Report (AR) documents the determination of pH correction factors for the observed pH readings. The correction factor converts the observed pH reading recorded from the brines used in geochemical studies in support of the Waste Isolation Pilot Plant (WIPP) to a corrected pH value. The data analysis in this AR falls under AP-157 Rev. 1 Analysis Plan for Determination of pH Correction Factors in Brines (Kirkes et al, 2021). Measurement of pH in some solutions can be challenging due to numerous factors such as high ionic strength, elevated or lowered temperature, complex matrix composition, etc. (Knauss et al., 1990; and Rai et al., 1995). The measured pH can be corrected by applying the correction factor, empirically obtained from a specific test solution.

More Details
6 Results
6 Results