High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.
Residual stress is a contributor to stress corrosion cracking (SCC) and a common byproduct of additive manufacturing (AM). Here the relationship between residual stress and SCC susceptibility in laser powder bed fusion AM 316L stainless steel was studied through immersion in saturated boiling magnesium chloride per ASTM G36-94. The residual stress was varied by changing the sample height for the as-built condition and additionally by heat treatments at 600°C, 800°C, and 1,200°C to control, and in some cases reduce, residual stress. In general, all samples in the as-built condition showed susceptibility to SCC with the thinner, lower residual stress samples showing shallower cracks and crack propagation occurring perpendicular to melt tracks due to local residual stress fields. The heat-treated samples showed a reduction in residual stress for the 800°C and 1,200°C samples. Both were free of cracks after >300 h of immersion in MgCl2, while the 600°C sample showed similar cracking to their as-built counterpart. Geometrically necessary dislocation (GND) density analysis indicates that the dislocation density may play a major role in the SCC susceptibility.
Phase-based motion processing and the associated Motion Magnification that it enables has become popular not only for the striking videos that it can produce of traditionally stiff structures visualized with very large deflections, but also for its ability to pull information out of the noise floor of images so that they can be processed with more traditional optical techniques such as digital image correlation or feature tracking. While the majority of papers in the literature have utilized the Phase-based Image Processing approach as a pre-processor for more quantitative analyses, the technique itself can be used directly to extract modal parameters from an image, noting that the extracted phases are proportional to displacements in the image. Once phases are extracted, they can be fit using traditional experimental modal analysis techniques. This produces a mode “shape” where the degrees of freedom are phases instead of physical motions. These phases can be scaled to produce on-image visualizations of the mode shapes, rather than operational shapes produced by bandpass filtering. Modal filtering techniques can also be used to visualize motions from an environment on an image using the modal phases as a basis for the expansion.
We develop a generalized stress inversion technique (or the generalized inversion method) capable of recovering stresses in linear elastic bodies subjected to arbitrary cuts. Specifically, given a set of displacement measurements found experimentally from digital image correlation (DIC), we formulate a stress estimation inverse problem as a partial differential equation-constrained optimization problem. We use gradient-based optimization methods, and we accordingly derive the necessary gradient and Hessian information in a matrix-free form to allow for parallel, large-scale operations. By using a combination of finite elements, DIC, and a matrix-free optimization framework, the generalized inversion method can be used on any arbitrary geometry, provided that the DIC camera can view a sufficient part of the surface. We present numerical simulations and experiments, and we demonstrate that the generalized inversion method can be applied to estimate residual stress.
Digital Image Correlation (DIC) is a well-established, non-contact diagnostic technique used to measure shape, displacement and strain of a solid specimen subjected to loading or deformation. However, measurements using standard DIC can have significant errors or be completely infeasible in challenging experiments, such as explosive, combustion, or fluid-structure interaction applications, where beam-steering due to index of refraction variation biases measurements or where the sample is engulfed in flames or soot. To address these challenges, we propose using X-ray imaging instead of visible light imaging for stereo-DIC, since refraction of X-rays is negligible in many situations, and X-rays can penetrate occluding material. Two methods of creating an appropriate pattern for X-ray DIC are presented, both based on adding a dense material in a random speckle pattern on top of a less-dense specimen. A standard dot-calibration target is adapted for X-ray imaging, allowing the common bundle-adjustment calibration process in commercial stereo-DIC software to be used. High-quality X-ray images with sufficient signal-to-noise ratios for DIC are obtained for aluminum specimens with thickness up to 22.2 mm, with a speckle pattern thickness of only 80 μm of tantalum. The accuracy and precision of X-ray DIC measurements are verified through simultaneous optical and X-ray stereo-DIC measurements during rigid in-plane and out-of-plane translations, where errors in the X-ray DIC displacements were approximately 2–10 μm for applied displacements up to 20 mm. Finally, a vast reduction in measurement error—5–20 times reduction of displacement error and 2–3 times reduction of strain error—is demonstrated, by comparing X-ray and optical DIC when a hot plate induced a heterogeneous index of refraction field in the air between the specimen and the imaging systems. Collectively, these results show the feasibility of using X-ray-based stereo-DIC for non-contact measurements in exacting experimental conditions, where optical DIC cannot be used.
Digital image correlation (DIC) is an optical metrology method widely used in experimental mechanics for full-field shape, displacement and strain measurements. The required strain resolution for engineering applications of interest mandates DIC to have a high image displacement matching accuracy, on the order of 1/100th of a pixel, which necessitates an understanding of DIC errors. In this paper, we examine two spatial bias terms that have been almost completely overlooked. They cause a persistent offset in the matching of image intensities and thus corrupt DIC results. We name them pattern-induced bias (PIB), and intensity discretization bias (IDB). We show that the PIB error occurs in the presence of an undermatched shape function and is primarily dictated by the underlying intensity pattern for a fixed displacement field and DIC settings. The IDB error is due to the quantization of the gray level intensity values in the digital camera. In this paper we demonstrate these errors and quantify their magnitudes both experimentally and with synthetic images.
Residual stress is a common result of manufacturing processes, but it is one that is often overlooked in design and qualification activities. There are many reasons for this oversight, such as lack of observable indicators and difficulty in measurement. Traditional relaxation-based measurement methods use some type of material removal to cause surface displacements, which can then be used to solve for the residual stresses relieved by the removal. While widely used, these methods may offer only individual stress components or may be limited by part or cut geometry requirements. Diffraction-based methods, such as X-ray or neutron, offer non-destructive results but require access to a radiation source. With the goal of producing a more flexible solution, this LDRD developed a generalized residual stress inversion technique that can recover residual stresses released by all traction components on a cut surface, with much greater freedom in part geometry and cut location. The developed method has been successfully demonstrated on both synthetic and experimental data. The project also investigated dislocation density quantification using nonlinear ultrasound, residual stress measurement using Electronic Speckle Pattern Interferometry Hole Drilling, and validation of residual stress predictions in Additive Manufacturing process models.
The Virtual Fields Method (VFM) is an inverse technique used for parameter estimation and calibration of constitutive models. Many assumptions and approximations—such as plane stress, incompressible plasticity, and spatial and temporal derivative calculations—are required to use VFM with full-field deformation data, for example, from Digital Image Correlation (DIC). This work presents a comprehensive discussion of the effects of these assumptions and approximations on parameters identified by VFM for a viscoplastic material model for 304L stainless steel. We generated synthetic data from a Finite-Element Analysis (FEA) in order to have a reference solution with a known material model and known model parameters, and we investigated four cases in which successively more assumptions and approximations were included in the data. We found that VFM is tolerant to small deviations from the plane stress condition in a small region of the sample, and that the incompressible plasticity assumption can be used to estimate thickness changes with little error. A local polynomial fit to the displacement data was successfully employed to compute the spatial displacement gradients. The choice of temporal derivative approximation (i.e., backwards difference versus central difference) was found to have a significant influence on the computed rate of deformation and on the VFM results for the rate-dependent model used in this work. Finally, the noise introduced into the displacement data from a stereo-DIC simulator was found to have negligible influence on the VFM results. Evaluating the effects of assumptions and approximations using synthetic data is a critical first step for verifying and validating VFM for specific applications. The results of this work provide the foundation for confidently using VFM for experimental data.
Conference Proceedings of the Society for Experimental Mechanics Series
Reu, Phillip L.; Toussaint, E.; Jones, E.; Bruck, H.; Iadicola, M.; Balcaen, R.; Turner, Daniel Z.; Siebert, T.; Lava, P.; Simonsen, M.; Grewer, M.
The 2D-DIC Challenge is organized by an international committee working to understand the accuracy of digital image correlation (DIC) through standardized image sets. The DIC Challenge is run under the auspices of the Society for Experimental Mechanics (SEM) and the International DIC Society (iDICs). The 2D-Challenge incorporates 19 image sets that can be used in evaluating 2D-DIC algorithms. The full results of the study and description of the image sets may be found in Reu et al. (Exp Mech, 2017). A new round of the 2D Challenge is being launched at SEM 2018 and will seek to probe the concept of spatial resolution.
A major and often unrecognized error source in digital image correlation (DIC) is the influence of the intervening air between the cameras and sample. Minute differences in air temperature, composition, or both can cause index of refraction changes that act as a lens and cause distortions in the DIC displacement and strain results (Jones and Reu, Exp Mech, 2017). There are limited options to correct this problem as it is both spatial and temporal in nature. One method is to use X-rays for imaging that are not affected by air refraction, but this requires costly equipment. A second method uses a vacuum chamber to minimize the intervening air to remove the distortions, but unfortunately this requires inconvenient setups.
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. There are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heat waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. Therefore, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.
Traditionally, material identification is performed using global load and displacement data from simple boundary-value problems such as uni-axial tensile and simple shear tests. More recently, however, inverse techniques such as the Virtual Fields Method (VFM) that capitalize on heterogeneous, full-field deformation data have gained popularity. In this work, we have written a VFM code in a finite-deformation framework for calibration of a viscoplastic (i.e. strain-rate dependent) material model for 304L stainless steel. Using simulated experimental data generated via finite-element analysis (FEA), we verified our VFM code and compared the identified parameters with the reference parameters input into the FEA. The identified material model parameters had surprisingly large error compared to the reference parameters, which was traced to parameter covariance and the existence of many essentially equivalent parameter sets. This parameter non-uniqueness and its implications for FEA predictions is discussed in detail. Finally, we present two strategies to reduce parameter covariance – reduced parametrization of the material model and increased richness of the calibration data – which allow for the recovery of a unique solution.
Reu, Phillip L.; Toussaint, E.; Jones, E.; Bruck, H.A.; Iadicola, M.; Balcaen, R.; Turner, Daniel Z.; Siebert, T.; Lava, P.; Simonsen, M.
With the rapid spread in use of Digital Image Correlation (DIC) globally, it is important there be some standard methods of verifying and validating DIC codes. To this end, the DIC Challenge board was formed and is maintained under the auspices of the Society for Experimental Mechanics (SEM) and the international DIC society (iDICs). The goal of the DIC Board and the 2D–DIC Challenge is to supply a set of well-vetted sample images and a set of analysis guidelines for standardized reporting of 2D–DIC results from these sample images, as well as for comparing the inherent accuracy of different approaches and for providing users with a means of assessing their proper implementation. This document will outline the goals of the challenge, describe the image sets that are available, and give a comparison between 12 commercial and academic 2D–DIC codes using two of the challenge image sets.
Modeling material and component behavior using finite element analysis (FEA) is critical for modern engineering. One key to a credible model is having an accurate material model, with calibrated model parameters, which describes the constitutive relationship between the deformation and the resulting stress in the material. As such, identifying material model parameters is critical to accurate and predictive FEA. Traditional calibration approaches use only global data (e.g. extensometers and resultant force) and simplified geometries to find the parameters. However, the utilization of rapidly maturing full-field characterization tech- niques (e.g. Digital Image Correlation (DIC)) with inverse techniques (e.g. the Virtual Feilds Method (VFM)) provide a new, novel and improved method for parameter identification. This LDRD tested that idea: in particular, whether more parameters could be identified per test when using full-field data. The research described in this report successfully proves this hypothesis by comparing the VFM results with traditional calibration methods. Important products of the research include: verified VFM codes for identifying model parameters, a new look at parameter covariance in material model parameter estimation, new validation tech- niques to better utilize full-field measurements, and an exploration of optimized specimen design for improved data richness.