X-ray computed tomography is generally a primary step in characterization of defective electronic components, but is generally too slow to screen large lots of components. Super-resolution imaging approaches, in which higher-resolution data is inferred from lower-resolution images, have the potential to substantially reduce collection times for data volumes accessible via x-ray computed tomography. Here we seek to advance existing two-dimensional super-resolution approaches directly to three-dimensional computed tomography data. Multiple scan resolutions over a half order of magnitude of resolution were collected for four classes of commercial electronic components to serve as training data for a deep-learning, super-resolution network. A modular python framework for three-dimensional super-resolution of computed tomography data has been developed and trained over multiple classes of electronic components. Initial training and testing demonstrate the vast promise for these approaches, which have the potential for more than an order of magnitude reduction in collection time for electronic component screening.
The microstructural-scale mechanisms that produce cracks in metals during deformation at elevated temperatures are relevant to applications that involve thermal exposure. Prior studies of cavitation during high-temperature deformation, for example, creep, suffered from an inability to directly observe the microstructural evolution that occurs during deformation and leads to void nucleation. The current study takes advantage of modern high-speed electron backscatter diffraction (EBSD) detectors to observe cavitation in oxygen-free, high-conductivity copper in situ during deformation at 300°C. Most voids formed at the triple junction between a twin boundary and a high-angle grain boundary (HAGB). This finding does not contradict previous studies that suggested that twins are resistant to cracking—it reveals that cracks in HAGBs originate at twin/HAGB triple junctions and that cracks preferentially grow along HAGBs rather than the accompanying twins. Atomistic simulations explored the origins of this observation and suggest that twin/HAGB triple junctions are microstructural weak points.
Residual stress is a contributor to stress corrosion cracking (SCC) and a common byproduct of additive manufacturing (AM). Here the relationship between residual stress and SCC susceptibility in laser powder bed fusion AM 316L stainless steel was studied through immersion in saturated boiling magnesium chloride per ASTM G36-94. The residual stress was varied by changing the sample height for the as-built condition and additionally by heat treatments at 600°C, 800°C, and 1,200°C to control, and in some cases reduce, residual stress. In general, all samples in the as-built condition showed susceptibility to SCC with the thinner, lower residual stress samples showing shallower cracks and crack propagation occurring perpendicular to melt tracks due to local residual stress fields. The heat-treated samples showed a reduction in residual stress for the 800°C and 1,200°C samples. Both were free of cracks after >300 h of immersion in MgCl2, while the 600°C sample showed similar cracking to their as-built counterpart. Geometrically necessary dislocation (GND) density analysis indicates that the dislocation density may play a major role in the SCC susceptibility.
Ground 304 stainless steel (SS) samples were exposed to sea salt particles at 35 °C and two relative humidity (RH) levels for durations ranging from 1 week to 2 years. For all exposure times, pit number density and total pit volume at 40% RH were observed to be considerably greater than those at 76% RH. Statistical analysis of distributions of pit populations for both RH conditions showed that pit number density and total pit volume increased rapidly at first but slowed as exposure time increased. Cross-hatched features were observed in the 40% RH pits while ellipsoidal, faceted pits were observed at 76% RH. Optical profilometry indicated that most pits were not hemispherical. X-ray tomography provided evidence of undercutting and fissures. Piecewise curve fitting modeled the 40% RH data closely, predicting that corrosion damage would eventually plateau. However, a similar treatment of the 76% RH data suggested that corrosion damage would continuously increase, which implied that the piecewise power-law fit was limited in its ability to model atmospheric corrosion generally. Based on these observations, the operative mechanisms determining long-term corrosion behavior were hypothesized to be different depending on the RH of exposure.
This study employs nonlinear ultrasonic techniques to track microstructural changes in additively manufactured metals. The second harmonic generation technique based on the transmission of Rayleigh surface waves is used to measure the acoustic nonlinearity parameter, β. Stainless steel specimens are made through three procedures: traditional wrought manufacturing, laser-powder bed fusion, and laser engineered net shaping. The β parameter is measured through successive steps of an annealing heat treatment intended to decrease dislocation density. Dislocation density is known to be sensitive to manufacturing variables. In agreement with fundamental material models for the dislocation-acoustic nonlinearity relationship in the second harmonic generation, β drops in each specimen throughout the heat treatment before recrystallization. Geometrically necessary dislocations (GNDs) are measured from electron back-scatter diffraction as a quantitative indicator of dislocations; average GND density and β are found to have a statistical correlation coefficient of 0.852 showing the sensitivity of β to dislocations in additively manufactured metals. Moreover, β shows an excellent correlation with hardness, which is a measure of the macroscopic effect of dislocations.
Understanding the mechanistic relationship between the environment, microstructure, and local kinetics of atmospheric corrosion damage remains a central challenge. To address this challenge, this study used laboratory-based X-ray tomography to directly observe attack in-operando over an extended period, enabling insights into the evolving growth kinetics and morphology of individual pits over months of exposure. Damage progression associated with nine pits in a 99.9% pure aluminum wire exposed to chloride salts in humid air was characterized. Most pits grew at a nominally linear rate up until pit death, which occurred within 12–24 h of nucleation. Exceptions to this were observed, with three pits exhibiting bimodal growth kinetics and growing for 40 or more hours. This was explained by secondary droplets that formed near the pits, increasing the cathode area. A corrosion-driven drying mechanism likely contributed to pit death in both cases. Pits first grew into the material followed by lateral expansion.
Dynamic grain growth is demonstrated to be much faster than static grain growth in a body-centered-cubic, interstitial-free steel sheet material at 850∘C. Dynamic grain growth occurs during concurrent plastic deformation at elevated temperature, whereas static grain growth occurs during static annealing. Grain growth during steady-state plastic flow in tension at 850∘C to a true strain of 0.2 at a true-strain rate of 10 - 4 s - 1 doubled grain size, while static annealing for the same time produced no increase in grain size. This is described as dynamic normal grain growth (DNGG) because no abnormally large grains were observed. The recrystallized microstructure of the steel demonstrated a log-normal distribution of grain sizes. DNGG produced bimodal grain size distributions that deviate from the theoretical expectation of a simple shift to larger sizes during normal growth. The bimodal distributions contained a remnant of small grains that were not consumed during grain growth. DNGG produced a crystallographic texture that is unique from both the recrystallized material and that produced by lattice rotation alone. DNGG strengthened the { 111 } ⟨ 110 ⟩ and { 111 } ⟨ 112 ⟩ components of the strong γ-fiber component in the original recrystallization texture. Lattice rotation from tensile deformation, by contrast, strengthened the α-fiber components that intersect the original γ-fiber.
Mechanical testing was conducted to collect the data needed to build a Xue-Wierzbicki (XW) fracture model for PH13-8 Mo H950 stainless steel (PH 13-8 SS). This model is intended for use in structural analysis of this material between room temperature and -40° C. Tests were performed on four different specimen geometries such that a range of stress states were characterized at room temperature and -40° C. Tensile tests on R5 tensile specimens were also performed to assess material anisotropy. Fracture toughness test were also conducted. The fracture toughness of this material at -40° C was 68% of the room-temperature value. Material strength generally increased with decreasing temperature while the opposite trend was observed for ductility. These trends were most pronounced for specimens with the largest stress triaxialities.
Additive manufacturing (AM) promises rapid development cycles and fabrication of ready-to-use, geometrically-complex parts. The metallic parts produced by AM often contain highly non-equilibrium microstructures, e.g. chemical microsegregation and residual dislocation networks. While such microstructures can enhance some material properties, they are often undesirable. Many AM parts are thus heat-treated after fabrication, a process that significantly slows production. This study investigated if electropulsing, the process of sending high-current-density electrical pulses through a metallic part, could be used to modify the microstructures of AM 316 L stainless steel (SS) and AlSi10Mg parts fabricated by selective laser melting (SLM) more rapidly than thermal annealing. Electropulsing has shown promise as a rapid postprocessing method for materials fabricated using conventional methods, e.g. casting and rolling, but has never been applied to AM materials. For both the materials used in this study, as-fabricated SLM parts contained significant chemical heterogeneity, either chemical microsegregation (316 L SS) or a cellular interdendritic phase (AlSi10Mg). In both cases, annealing times on the order of hours at high homologous temperatures are necessary for homogenization. Using electropulsing, chemical microsegregation was eliminated in 316 L SS samples after 10, 16 ms electrical pulses. In AlSi10Mg parts, electropulsing produced spheroidized Si-rich particles after as few as 15, 16 ms electrical pulses with a corresponding increase in ductility. This study demonstrated that electropulsing can be used to modify the microstructures of AM metals.
Ductile rupture or tearing usually involves structural degradation from the nucleation and growth of voids and their coalescence into cracks. Although some materials contain preexisting pores, the first step in failure is often the formation of voids. Because this step can govern both the failure strain and the fracture mechanism, it is critical to understand the mechanisms of void nucleation and the enabling microstructural configurations which give rise to nucleation. To understand the role of dislocations during void nucleation, the present study presents ex-situ cross-sectional observations of interrupted deformation experiments revealing incipient, subsurface voids in a copper material containing copper oxide inclusions. The local microstructural state was evaluated using electron backscatter diffraction (EBSD), electron channeling contrast (ECC), transmission electron microscopy (TEM), and transmission kikuchi diffraction (TKD). Surprisingly, before substantial growth and coalescence had occurred, the deformation process had resulted in the nucleation of a high density of nanoscale (≈50 nm) voids in the deeply deformed neck region where strains were on the order of 1.5. Such a proliferation of nucleation sites immediately suggests that the rupture process is limited by void growth, not nucleation. With regard to void growth, analysis of more than 20 microscale voids suggests that dislocation boundaries facilitate the growth process. The present observations call into question prior assumptions on the role of dislocation pile-ups and provide new context for the formulation of revised ductile rupture models. While the focus of this study is on damage accumulation in a highly ductile metal containing small, well-dispersed particles, these results are also applicable to understanding void nucleation in engineering alloys.
The competition between ductile rupture mechanisms in high-purity Cu and other metals is sensitive to the material composition and loading conditions, and subtle changes in the metal purity can lead to failure either by void coalescence or Orowan Alternating Slip (OAS). In situ X-ray computed tomography tensile tests on 99.999% purity Cu wires have revealed that the rupture process involves a sequence of damage events including shear localization; growth of micron-sized voids; and coalescence of microvoids into a central cavity prior to the catastrophic enlargement of the coalesced void via OAS. This analysis has shown that failure occurs in a collaborative rather than strictly competitive manner. In particular, strain localization along the shear band enhanced void nucleation and drove the primary coalescence event, and the size of the resulting cavity and consumption of voids ensured a transition to the OAS mechanism rather than continued void coalescence. Additionally, the tomograms identified examples of void coalescence and OAS growth of individual voids at all stages of the failure process, suggesting that the transition between the different mechanisms was sensitive to local damage features, and could be swayed by collaboration with other damage mechanisms. The competition between the different damage mechanisms is discussed in context of the material composition, the local damage history, and collaboration between the mechanisms.
The roles of subgrains, texture, and surface energy during dynamic abnormal grain growth (DAGG) were examined in a commercial-purity Mo rod material. DAGG was observed in this material during tensile deformation at 2023 K (1750 °C). Cooling of specimens after tensile testing was sufficiently rapid to preserve both subgrain structures developed during deformation and several abnormal grains at early stages of growth. These and other microstructural features were characterized to evaluate how subgrains and boundary character influence the early stages of DAGG. Subgrains were observed in the deformed polycrystalline material but were generally absent in newly formed abnormal grains. This was identified as the cause of the sudden drop in flow stress observed at the initiation of DAGG. It is proposed that subgrain intersections with abnormal grain boundaries provide a driving pressure for DAGG. Subgrains within the deformed polycrystals were observed to locally change the boundary curvature at their intersections with abnormal grain boundaries, which likely encouraged growth of the abnormal grains into the deformed polycrystals. Abnormal grains produced by DAGG retained crystallographic orientations and boundary characters that closely resembled those of the polycrystalline material from which they grew. This suggests that neither differences in orientation nor boundary character were important to DAGG in this material.