Publications

168 Results
Skip to search filters

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul M.; Connolly, Laura A.; Cunningham, Leigh C.; Debusschere, Bert D.; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; LaForce, Tara; Nole, Michael A.; Park, Heeho D.; Perry, Frank V.; Rogers, Ralph D.; Seidl, Daniel T.; Sevougian, Stephen D.; Stein, Emily S.; Swift, Peter N.; Swiler, Laura P.; Vo, Jonathan V.; Wallace, Michael G.

Abstract not provided.

Re-evaluation of U.S. DOE R&D efforts for generic deep geologic repositories - Roadmap update

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Sevougian, S.D.; Hammond, Glenn E.; Mariner, Paul M.; MacKinnon, R.J.; Swift, Peter N.; Rogers, R.D.; Dobson, D.C.; Tynan, M.C.

R&D addressing the disposal of commercial spent nuclear fuel in the U.S. is currently generic (i.e., “non-site-specific”) in scope. However, to prepare for the eventuality of a repository siting process, the former Used Fuel Disposition (UFD) Campaign of the Nuclear Energy (NE) Office of the U.S. DOE formulated an R&D Roadmap in 2012 outlining generic R&D activities and their priorities appropriate for developing safety cases and associated performance assessment (PA) models for deep geologic repositories in several potential host-rock environments in the contiguous United States. This 2012 UFD Roadmap identified the importance of re-evaluating priorities in future years as knowledge is gained from the DOE's ongoing R&D activities. Since 2012, significant knowledge has been gained from these activities through R&D in the U.S. and via international collaborations, especially with countries that operate underground research laboratories (URLs). The 2019 R&D Roadmap Update, introduced here, summarizes the progress of ongoing R&D activities, re-assesses R&D priorities, and identifies new activities of high priority, such as R&D on disposal of DPCs (dual purpose canisters), which now contain a significant fraction of the Nation's spent fuel activity.

More Details

The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

MRS Advances

Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.

More Details

Safety assessment for deep geological disposal of high-level radioactive waste

Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste

Swift, Peter N.

Safety assessments estimate the long-term performance of geological disposal systems for radioactive waste using quantitative models. This paper reviews regulatory standards, selection of scenarios for analysis, the development of computational models and their linkage into a system analysis, and the iterative relationship between site characterization and safety assessment. Uncertainty must be acknowledged and can be accounted for using both conservative deterministic and probabilistic approaches. In addition to generating performance estimates for comparison to regulatory standards, safety assessments can also guide research and model development, evaluate design alternatives, enhance the scientific understanding of the system, and contribute to public acceptance.

More Details

Geological disposal of nuclear waste in tuff: Yucca Mountain (USA)

Elements

Swift, Peter N.; Bonano, Evaristo J.

For more than three decades, the US Department of Energy has investigated the potential for permanent disposal of high-level radioactive waste and spent nuclear fuel in a deep-mined repository at Yucca Mountain, Nevada (USA). A detailed license application submitted to the US Nuclear Regulatory Commission in 2008 provides full documentation of the case for permanent disposal of nuclear waste in tuff. The aridity of the site and great depth to the water table provide a disposal environment and a design concept unique among deep-mined repositories currently or previously proposed worldwide.

More Details

International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

Faybishenko, Boris F.; Birkholzer, Jens T.; Persoff, Peter P.; Sassani, David C.; Swift, Peter N.

An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the future of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.

More Details

Update on the United States Department of Energy's Used Fuel Disposition R&D Campaign

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Swift, Peter N.; Birkholzer, Jens T.; Bragg-Sitton, Shannon; MacKinnon, R.J.; McMahon, Kevin A.; Saltzstein, Sylvia J.; Sorenson, Ken B.

The United States Department of Energy (DOE) is conducting research and development (R&D) activities within the Used Fuel Disposition Campaign to support the implementation of the DOE's 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. R&D activities focus on storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles and are ongoing at nine national laboratories. Additional relevant R&D is conducted at multiple universities through the DOE's Nuclear Energy University Program. Within the storage and transportation areas, R&D continues to focus on technical gaps related to extended storage and subsequent transportation of UNF. Primary emphasis for FY15 is on experimental and analysis activities that support the DOE s dry cask demonstration confirmatory data project initiated at the North Anna Nuclear Power Plant in Virginia by the Electric Power Research Institute in collaboration with AREVA and Dominion Power. Within the disposal research area, current planning calls for a significant increase in R&D associated with evaluating the feasibility of deep borehole disposal of some waste forms, in addition to a continued emphasis on confirming the viability of generic mined disposal concepts in multiple geologic media. International collaborations that allow the U.S. program to benefit from experience and opportunities for research in other nations remain a high priority.

More Details

Qualitative evaluation of options for disposal of SNF and HLW

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Price, Laura L.; Sassani, David C.; Swift, Peter N.; Bonano, Evaristo J.

Options for disposal of the spent nuclear fuel and high level radioactive waste that are projected to exist in the United States in 2048 were studied. The options included four different disposal concepts: mined repositories in salt, clay/shale rocks, and crystalline rocks; and deep boreholes in crystalline rocks. Some of the results of this study are that all waste forms, with the exception of untreated sodium-bonded spent nuclear fuel, can be disposed of in any of the mined disposal concepts, although with varying degrees of confidence; salt allows for more flexibility in managing high-heat waste in mined repositories than other media; small waste forms are potentially attractive candidates for deep borehole disposal; and disposal of commercial SNF in existing dual-purpose canisters is potentially feasible but could pose significant challenges both in repository operations and in demonstrating confidence in long-term performance. Questions addressed by this study include: is a " 'one-size-fits-all ' repository a good strategic option for disposal?" and "do some disposal concepts perform significantly better with or without specific waste types or forms? " The study provides the bases for answering these questions by evaluating potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal.

More Details

Update of the Used Fuel Dispositon Campaign Implementation Plan

McMahon, Kevin A.; Bragg-Sitton, Shannon B.; MacKinnon, R.J.; Saltzstein, Sylvia J.; Sorenson, Ken B.; Swift, Peter N.; Birkholzer, Jens T.

This Update to the Used Fuel Disposition Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program, building on work completed in this area since 2009. This implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclearfuel- and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to available funding and progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

More Details

Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste

Swift, Peter N.

Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

More Details

Establishment of research and development priorities regarding the geologic disposal of nuclear waste in the United States and strategies for international collaboration

Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM

Nutt, Mark; Voegele, Michael; Birkholzer, Jens; Swift, Peter N.; McMahon, Kevin A.; Peters, Mark; Williams, Jeff

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technologies (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level radioactive waste (HLW). The U.S. has, in accordance with the U.S. Nuclear Waste Policy Act (as amended), focused efforts for the past twentyplus years on disposing of UNF and HLW in a geologic repository at Yucca Mountain, Nevada. The recent decision by the U.S. DOE to no longer pursue the development of that repository has necessitated investigating alternative concepts for the disposal of UNF and HLW that exists today and that could be generated under future fuel cycles. The disposal of UNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made by in the U.S and other nations, but gaps in knowledge still exist. The U.S. national laboratories have participated in these programs and have conducted R&D related to these issues to a limited extent. However, a comprehensive R&D program investigating a variety of storage, geologic media, and disposal concepts has not been a part of the U.S. waste management program since the mid 1980s because of its focus on the Yucca Mountain site. Such a comprehensive R&D program is being developed and executed in the UFDC using a systematic approach to identify potential R&D opportunities. This paper describes the process used by the UFDC to identify and prioritize R&D opportunities. The U.S. DOE has cooperated and collaborated with other countries in many different "arenas" including the Nuclear Energy Agency (NEA) within the Organisation for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited the DOE through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. Recognizing that programs in other countries have made significant advances in understanding a wide range of geologic environments, the UFDC has developed a strategy for continued, and expanded, international collaboration. This paper also describes this strategy. Copyright © 2011 by ASME.

More Details

Office of fuel cycle technologies, used fuel disposition campaign objective, mission, plans, and activity status

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Nutt, Mark; Peters, Mark; Swift, Peter N.; McMahon, Kevin A.; Sorenson, Ken B.; Schwab, Patrick

The safe management and disposition of used nuclear fuel and/or high level nuclear waste is a fundamental aspect of the nuclear fuel cycle. The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. However, a decision not to use the proposed Yucca Mountain Repository will result in longer interim storage at reactor sites than previously planned. In addition, alternatives to the once-through fuel cycle are being considered and a variety of options are being explored under the U.S. Department of Energy's Fuel Cycle Technologies Program. These two factors lead to the need to develop a credible strategy for managing radioactive wastes from any future nuclear fuel cycle in order to provide acceptable disposition pathways for all wastes regardless of transmutation system technology, fuel reprocessing scheme(s), and/or the selected fuel cycle. These disposition paths will involve both the storing of radioactive material for some period of time and the ultimate disposal of radioactive waste. To address the challenges associated with waste management, the DOE Office of Nuclear Energy established the Used Fuel Disposition Campaign in the summer of 2009. The mission of the Used Fuel Disposition Campaign is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The near-and long-term objectives of the Fuel Cycle Technologies Program and its ' Used Fuel Disposition Campaign are presented.

More Details

Potential impacts of alternative waste forms on long-term performance of geological repositories for radioactive waste

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Hansen, Clifford H.; Swift, Peter N.; Hardin, Ernest H.; MacKinnon, R.J.; Sassani, David C.; Sevougian, S.D.

Published results of performance assessments for deep geologic disposal of high-level radioactive waste and spent nuclear fuel provide insight into those aspects of the waste form that are potentially important to the long-term performance of a repository system. Alternative waste forms, such as might result from new technologies for processing spent fuel and advances in nuclear reactor design, have the potential to affect the long-term performance of a geologic repository. This paper reviews relevant results of existing performance assessments for a range of disposal concepts and provides observations about how hypothetical modifications to waste characteristics (e.g., changes in radionuclide inventory, thermal loading, and durability of waste forms) might impact results of the performance assessment models. Disposal concepts considered include geologic repositories in both saturated and unsaturated environments. Specifically, we consider four recent performance assessments as representative of a range of disposal concepts. We examine the extent to which results of these performance assessments are affected by (i) thermal loading of the waste proposed for disposal; (ii) mechanical and chemical lifetime of the waste form; and (iii) radionuclide content of the waste. We find that peak subsurface temperature generally is a constraint that can be met through engineering solutions and that processing of wastes to reduce thermal power may enable more efficient use of repositories rather than improved repository performance. We observe that the rate of radionuclide release is often limited by geologic or chemical processes other than waste form degradation. Thus, the effects on repository performance of extending waste-form lifetime may be relatively small unless the waste form lifetime becomes sufficiently long relative to the period of repository performance. Finally, we find that changes to radionuclide content of waste (e.g., by separation or transmutation processes) do not in general correspond to proportional effects on repository performance. Rather, the effect of changes to radionuclide content depends on the relative mobility of various radionuclides through the repository system, and consequently on repository geology and geochemistry.

More Details

Summary of the total system performance assessment for the Yucca Mountain license application

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Hansen, Clifford W.; Knowles, M.K.; MacKinnon, R.J.; McNeish, Jerry A.; Sevougian, S.D.; Swift, Peter N.

The Department of Energy's 2008 Yucca Mountain Performance Assessment represents the culmination of more than two decades of analyses of post-closure repository performance in support of programmatic decision making for the proposed Yucca Mountain repository. The 2008 performance assessment summarizes the estimated long-term risks to the health and safety of the public resulting from disposal of spent nuclear fuel and high-level radioactive waste in the proposed Yucca Mountain repository. The standards at 10 CFR Part 63 request several numerical estimates quantifying performance of the repository over time. This paper summarizes the key quantitative results from the performance assessment and presents uncertainty and sensitivity analyses for these results.

More Details

Applying insights from repository safety assessments to evaluating impacts of partitioning and transmutation

Swift, Peter N.

Published analyses of geologic repositories indicate potential for excellent long-term performance for a range of disposal concepts. Estimates of peak dose may be dominated by different radionuclides in different disposal concepts. Thermal loading issues can be addressed by design and operational choices. Impact of waste form lifetime on estimates of peak dose varies for different disposal concepts.

More Details

Regulatory standards for permanent disposal of spent nuclear fuel and high-level radioactive waste

Swift, Peter N.

This paper provides a summary of observations drawn from twenty years of personal experience in working with regulatory criteria for the permanent disposal of radioactive waste for both the Waste Isolation Pilot Plant repository for transuranic defense waste and the proposed Yucca Mountain repository for spent nuclear fuel and high-level wastes. Rather than providing specific recommendations for regulatory criteria, my goal here is to provide a perspective on topics that are fundamental to how high-level radioactive waste disposal regulations have been implemented in the past. What are the main questions raised relevant to long-term disposal regulations? What has proven effective in the past? Where have regulatory requirements perhaps had unintended consequences? New regulations for radioactive waste disposal may prove necessary, but the drafting of these regulations may be premature until a broad range of policy issues are better addressed. In the interim, the perspective offered here may be helpful for framing policy discussions.

More Details

The role of science supporting the Waste Isolation Pilot Plant

Swift, Peter N.

The presentation briefly addresses three topics. First, science has played an important role throughout the history of the WIPP project, beginning with site selection in the middle 1970s. Science was a key part of site characterization in the 1980s, providing basic information on geology, hydrology, geochemisty, and the mechanical behavior of the salt, among other topics. Science programs also made significant contributions to facility design, specifically in the area of shaft seal design and testing. By the middle 1990s, emphasis shifted from site characterization to regulatory evaluations, and the science program provided one of the essential bases for certification by the Environmental Protection Agency in 1998. Current science activities support ongoing disposal operations and regulatory recertification evaluations mandated by the EPA. Second, the EPA regulatory standards for long-term performance frame the scientific evaluations that provide the basis for certification. Unlike long-term dose standards applied to Yucca Mountain and proposed repositories in other nations, the WIPP regulations focused on cumulative releases during a fixed time interval of 10,000 years, and placed a high emphasis on the consequences of future inadvertent drilling intrusions into the repository. Close attention to the details of the regulatory requirements facilitated EPA's review of the DOE's 1996 Compliance Certification Application. Third, the scientific understanding developed for WIPP provided the basis for modeling studies that evaluated the long-term performance of the repository in the context of regulatory requirements. These performance assessment analyses formed a critical part of the demonstration that the site met the specific regulatory requirements as well as providing insight into the overall understanding of the long-term performance of the system. The presentation concludes with observations on the role of science in the process of developing a disposal system, including the importance of establishing the regulatory framework, building confidence in the long-term safety of the system, and the critical role of the regulator in decision making.

More Details

Applying insights from repository safety assessments

Swift, Peter N.

Despite decades of international consensus that deep geological disposal is the best option for permanent management of long-lived high-level radioactive wastes, no repositories for used nuclear fuel or high-level waste are in operation. Detailed long-term safety assessments have been completed worldwide for a wide range of repository designs and disposal concepts, however, and valuable insights from these assessments are available to inform future decisions about managing radioactive wastes. Qualitative comparisons among the existing safety assessments for disposal concepts in clay, granite, salt, and unsaturated volcanic tuff show how different geologic settings can be matched with appropriate engineered barrier systems to provide a high degree of confidence in the long-term safety of geologic disposal. Review of individual assessments provides insights regarding the release pathways and radionuclides that are most likely to contribute to estimated doses to humans in the far future for different disposal concepts, and can help focus research and development programs to improve management and disposal technologies. Lessons learned from existing safety assessments may be particularly relevant for informing decisions during the process of selecting potential repository sites.

More Details

Long-term performance of the proposed Yucca mountain repository, USA

Materials Research Society Symposium Proceedings

Swift, Peter N.; Knowles, M.K.; McNeish, Jerry; Hansen, Clifford W.; Howard, Robert L.; MacKinnon, Robert; Sevougia, S.D.

This paper summarizes the historical development of the United States Department of Energy's (DOE's) 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, and explains how the methods and results meet regulatory requirements specified by the United States Nuclear Regulatory Commission (NRC) and the United States Environmental Protection Agency (EPA). Topics covered include (i) screening of features, events and processes, (ii) development of scenario classes, (iii) descriptions of barrier capability, and (iv) compliance with applicable quantitative standards for individual protection, individual protection following human intrusion, and ground water protection. © 2009 Materials Research Society.

More Details

Deep borehole disposal of high-level radioactive waste

Brady, Patrick V.; Arnold, Bill W.; Freeze, Geoffrey A.; Swift, Peter N.; Bauer, Stephen J.; Rechard, Robert P.; Stein, Joshua S.

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

More Details

Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings

Swift, Peter N.; Brady, Patrick V.

The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

More Details
168 Results
168 Results