Publications

96 Results
Skip to search filters

Trapped Ion Qubits

Maunz, Peter L.

Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

More Details

High Optical Access Trap 2.0

Maunz, Peter L.

The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

More Details

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

Quantum Graph Analysis

Maunz, Peter L.; Sterk, Jonathan D.; Lobser, Daniel L.; Parekh, Ojas D.; Ryan-Anderson, Ciaran R.

In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

More Details

Micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Hollowell, Andrew E.; Lobser, Daniel L.; Nordquist, Christopher N.; Benito, Francisco M.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Resnick, Paul J.; Rembetski, John F.; Sterk, Jonathan D.; Stick, Daniel L.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.; Blain, Matthew G.; Scrymgeour, David S.

Abstract not provided.

Scalable micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Benito, Francisco M.; Berry, Christopher W.; Blain, Matthew G.; Haltli, Raymond A.; Clark, Craig R.; Clark, Susan M.; Heller, Edwin J.; Hollowell, Andrew E.; Mizrahi, Jonathan M.; Nordquist, Christopher N.; Resnick, Paul J.; Rembetski, John F.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.

Abstract not provided.

Turbocharging Quantum Tomography

Blume-Kohout, Robin J.; Gamble, John K.; Nielsen, Erik N.; Maunz, Peter L.; Scholten, Travis L.; Rudinger, Kenneth M.

Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

More Details

Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

Highstrete, Clark H.; Sterk, Jonathan D.; Heller, Edwin J.; Maunz, Peter L.; Nordquist, Christopher N.; Stevens, James E.; Tigges, Chris P.; Blain, Matthew G.

Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

More Details

Sandia Micro-fabricated Ion Traps for the MUSIQC architecture

Maunz, Peter L.; Heller, Edwin J.; Hollowell, Andrew E.; Kemme, S.A.; Loviza, Becky G.; Mizrahi, Jonathan A.; Ortega, Anathea C.; Scrymgeour, David S.; Sterk, Jonathan D.; Tigges, Chris P.; Dagel, Amber L.; Clark, Craig R.; Stick, Daniel L.; Blain, Matthew G.; Clark, Susan M.; Resnick, Paul J.; Arrington, Christian L.; Benito, Francisco M.; Boye, Robert B.; Ellis, A.R.; Haltli, Raymond A.

Abstract not provided.

96 Results
96 Results