Publications

149 Results
Skip to search filters

Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices

Applied Energy

Coe, Ryan G.; Ahn, Seongho; Neary, Vincent S.; Kobos, Peter H.; Bacelli, Giorgio B.

While a great deal of research has been performed to quantify and characterize the wave energy resource, there are still open questions about how a wave energy developer should use this wave resource information to design a wave energy converter device to suit a specific environment or, alternatively, to assess potential deployment locations. It is natural to focus first on the impressive magnitudes of power available from ocean waves, and to be drawn to locations where mean power levels are highest. However, a number of additional factors such as intermittency and capacity factor may be influential in determining economic viability of a wave energy converter, and should therefore be considered at the resource level, so that these factors can influence device design decisions. This study examines a set of wave resource metrics aimed towards this end of bettering accounting for variability in wave energy converter design. The results show distinct regional trends that may factor into project siting and wave energy converter design. Although a definitive solution for the optimal size of a wave energy converter is beyond the reaches of this study, the evidence presented does support the idea that smaller devices with lower power ratings may merit closer consideration.

More Details

Techno-Economic Analysis: Best Practices and Assessment Tools

Kobos, Peter H.; Drennen, Thomas E.; Outkin, Alexander V.; Webb, Erik K.; Paap, Scott M.; Wiryadinata, Steven W.

A team at Sandia National Laboratories (SNL) recognized the growing need to maintain and organize the internal community of Techno - Economic Assessment analysts at the lab . To meet this need, an internal core team identified a working group of experienced, new, and future analysts to: 1) document TEA best practices; 2) identify existing resources at Sandia and elsewhere; and 3) identify gaps in our existing capabilities . Sandia has a long history of using techno - economic analyses to evaluate various technologies , including consideration of system resilience . Expanding our TEA capabilities will provide a rigorous basis for evaluating science, engineering and technology - oriented projects, allowing Sandia programs to quantify the impact of targeted research and development (R&D), and improving Sandia's competitiveness for external funding options . Developing this working group reaffirms the successful use of TEA and related techniques when evaluating the impact of R&D investments, proposed work, and internal approaches to leverage deep technical and robust, business - oriented insights . The main findings of this effort demonstrated the high - impact TEA has on future cost, adoption for applications and impact metric forecasting insights via key past exemplar applied techniques in a broad technology application space . Recommendations from this effort include maintaining and growing the best practices approaches when applying TEA, appreciating the tools (and their limits) from other national laboratories and the academic community, and finally a recognition that more proposals and R&D investment decision s locally at Sandia , and more broadly in the research community from funding agencies , require TEA approaches to justify and support well thought - out project planning.

More Details

Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

International Journal of Greenhouse Gas Control

Dewers, Thomas D.; Eichhubl, Peter; Ganis, Ben; Gomez, Steven P.; Heath, Jason; Jammoul, Mohamad; Kobos, Peter H.; Liu, Ruijie; Major, Jonathan; Matteo, Edward N.; Newell, Pania; Rinehart, Alex; Sobolik, Steven R.; Stormont, John; Reda Taha, Mahmoud; Wheeler, Mary; White, Deandra

Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. To achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeability (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. An example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO2 trapping.

More Details

Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

Environmental Research Letters

Tidwell, Vincent C.; Moreland, Barbie; Shaneyfelt, Calvin R.; Kobos, Peter H.

The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered 'water rich' roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

More Details

Measuring Non-Market Values for Hydropower Production and Water Storage on the Colorado River: A White Paper Investigation

Lowry, Thomas S.; Chermak, Janie M.; Brookshire, David S.; Shaneyfelt, Calvin S.; Kobos, Peter H.

This study presents a conceptual framework for capturing the spatial and temporal aspects of non-market dimensions of value (DOV) and how they vary as the result of policy changes for hydropower generation and developed water uses. The foundation of this project is a literature review that reveals that focused, sector specific valuations are no longer adequate if the goal is to provide decision makers with a complete understanding of their decisions. Rather, estimates of non-market values for informing decisions regarding dam operations and/or other water management alternatives must consider the entire spectrum of market and non-market values, and the tradeoffs (both positive and negative) between those values over time and space, while considering shifting preferences in an uncertain environment. This document describes the history and reasoning for these conclusions and presents a conceptual framework for understanding non-market values as a function of changes to hydropower operations and water resources management.

More Details

Climate Induced Spillover and Implications for U.S. Security

Tidwell, Vincent C.; Naugle, Asmeret B.; Backus, George A.; Lott, Kathryn M.; Keller, Elizabeth J.; Kobos, Peter H.; Villa, Daniel V.

Developing nations incur a greater risk to climate change than the developed world due to poorly managed human/natural resources, unreliable infrastructure and brittle governing/economic institutions. These vulnerabilities often give rise to a climate induced “domino effect” of reduced natural resource production-leading to economic hardship, social unrest, and humanitarian crises. Integral to this cascading set of events is increased human migration, leading to the “spillover” of impacts to adjoining areas with even broader impact on global markets and security. Given the complexity of factors influencing human migration and the resultant spill-over effect, quantitative tools are needed to aid policy analysis. Toward this need, a series of migration models were developed along with a system dynamics model of the spillover effect. The migration decision models were structured according to two interacting paths, one that captured long-term “chronic” impacts related to protracted deteriorating quality of life and a second focused on short-term “acute” impacts of disaster and/or conflict. Chronic migration dynamics were modeled for two different cases; one that looked only at emigration but at a national level for the entire world; and a second that looked at both emigration and immigration but focused on a single nation. Model parameterization for each of the migration models was accomplished through regression analysis using decadal data spanning the period 1960-2010. A similar approach was taken with acute migration dynamics except regression analysis utilized annual data sets limited to a shorter time horizon (2001-2013). The system dynamics spillover model was organized around two broad modules, one simulating the decision dynamics of migration and a second module that treats the changing environmental conditions that influence the migration decision. The environmental module informs the migration decision, endogenously simulating interactions/changes in the economy, labor, population, conflict, water, and food. A regional model focused on Mali in western Africa was used as a test case to demonstrate the efficacy of the model.

More Details

Natural Gas Value-Chain and Network Assessments

Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.; Jenkins, La T.; Malczynski, Leonard A.; Myerly, Melissa M.; Vargas, Vanessa N.; Tenney, Craig M.; Borns, David J.

The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.

More Details

System Dynamics Modeling of the Colorado Basin for Optimizing Operations Reducing Risk and Increasing Resiliency

Lowry, Thomas S.; Kobos, Peter H.; Malczynski, Leonard A.; Tidwell, Vincent C.; Roach, Jesse D.; McMahon, Kevin A.

This paper is the output from SNL's involvement in the Western Area Power Administration (WAPA), the Colorado River Energy Distributors Association (CREDA), and the Upper Colo rado River Commission's (UCRC) sponsored Phase II work to establish market and non - market valu es (NMV's) of water and hydropower asso ciated with Glen Canyon Dam (GCD) operations and the Colorado River ecosystem. It describes the purpose and need to develop a systems model for the Colorado River Basin that includes valuations in the economic, hydrologic, environmental, social, and cultural sectors . It outlines the benefits and unique features associated with such a model and provides a roadmap of how a syste ms model would be developed and implemented. While not meant to serve as a full development plan, the ideas and concepts herein represent what the Sandia National Laboratories (SNL) research team believes is the most impac tful and effective path forward to address an ever increasing complex set of problems that occur at the basin - scale and beyond .

More Details

Timing Is everything: quantifying regulatory and market readiness levels for technology transition policy analysis

Sandia journal manuscript; Not yet accepted for publication

Kobos, Peter H.; Malczynski, Leonard A.; Jenkins, La T.

People save for retirement throughout their career because it is virtually impossible to save all you’ll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. This notion of steady installation growth over acute installations of technology to meet policy goals is the core topic of discussion for this research. This research operationalizes this notion by developing the theoretical underpinnings of regulatory and market acceptance delays by building upon the common Technology Readiness Level (TRL) framework and offers two new additions to the research community. The new and novel Regulatory Readiness Level (RRL) and Market Readiness Level (MRL) frameworks were developed. These components, collectively called the Technology, Regulatory and Market (TRM) readiness level framework allow one to build new constraints into existing Integrated Assessment Models (IAMs) to address research questions such as, ‘To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?’

More Details

The Water, Energy, and Carbon Dioxide Sequestration Simulation Model (WECSsim). A user's manual

Kobos, Peter H.; Roach, Jesse D.; Klise, Geoffrey T.; Heath, Jason; Dewers, Thomas D.; Malczynski, Leonard A.; Borns, David J.

The Water, Energy, and Carbon Sequestration Simulation Model (WECSsim) is a national dynamic simulation model that calculates and assesses capturing, transporting, and storing CO2 in deep saline formations from all coal and natural gas-fired power plants in the U.S. An overarching capability of WECSsim is to also account for simultaneous CO2 injection and water extraction within the same geological saline formation. Extracting, treating, and using these saline waters to cool the power plant is one way to develop more value from using saline formations as CO2 storage locations. WECSsim allows for both one-to-one comparisons of a single power plant to a single saline formation along with the ability to develop a national CO2 storage supply curve and related national assessments for these formations. This report summarizes the scope, structure, and methodology of WECSsim along with a few key results. Developing WECSsim from a small scoping study to the full national-scale modeling effort took approximately 5 years. This report represents the culmination of that effort. The key findings from the WECSsim model indicate the U.S. has several decades' worth of storage for CO2 in saline formations when managed appropriately. Competition for subsurface storage capacity, intrastate flows of CO2 and water, and a supportive regulatory environment all play a key role as to the performance and cost profile across the range from a single power plant to all coal and natural gas-based plants' ability to store CO2. The overall system's cost to capture, transport, and store CO2 for the national assessment range from $74 to $208 / tonne stored ($96 to 272 / tonne avoided) for the first 25 to 50% of the 1126 power plants to between $1,585 to well beyond $2,000 / tonne stored ($2,040 to well beyond $2,000 / tonne avoided) for the remaining 75 to 100% of the plants. The latter range, while extremely large, includes all natural gas power plants in the U.S., many of which have an extremely low capacity factor and therefore relatively high system's cost to capture and store CO2.

More Details

Timing is everything :

Kobos, Peter H.; Jenkins, La T.; Malczynski, Leonard A.

People save for retirement throughout their career because it is virtually impossible to save all youll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is, To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades? Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve for optimal engineering instead of robust and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework or module to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the models capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technologys demand in the marketplace.

More Details

Potential Impacts of Electric Power Production Utilizing Natural Gas, Renewables and Carbon Capture and Sequestration on U.S. Freshwater Resources

Environmental Science and Technology

Tidwell, Vincent C.; Malczynski, Leonard A.; Kobos, Peter H.; Klise, Geoffrey T.

Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm3/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm3/d of water savings.

More Details

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool

Lord, Anna S.; Kobos, Peter H.; Klise, Geoffrey T.; Borns, David J.

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

More Details

Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling

Kobos, Peter H.; Roach, Jesse D.; Klise, Geoffrey T.; Krumhansl, James L.; Heath, Jason; Dewers, Thomas D.; Borns, David J.

The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

More Details

New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration

Roach, Jesse D.; Kobos, Peter H.; Klise, Geoffrey T.; Krumhansl, James L.

Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

More Details

The energy-water nexus and the role of carbon capture and sequestration

Malczynski, Leonard A.; Kobos, Peter H.; Castillo, Cesar R.

There is growing evidence of human induced climate change. Various legislation has been introduced to cap carbon emissions. Fossil powered electric generation is responsible for over 30% of the U.S. emissions. Carbon Capture and Sequestration (CCS) technology is water and energy intensive. The project's objectives are: (1) Explore water consumption implications associated with full deployment of a Carbon Capture and Storage (CCS) future; (2) Identify vulnerable areas in which water resources may be too limited to enable full deployment of CCS technology; and (3) Implement project with the cooperation of the National Energy Technology Laboratory (NETL) and DOE Office of Policy and International Affairs. Thermoelectric consumption projected to increase by 3.7 BGD due to CCS by 2035, a doubling over 2004. This increase is equivalent to projected growth in consumption by all other sectors. Demand is not equally distributed across the U.S. 18.5% of this future demand is located in watershed prone to surface and groundwater stress. 30% of current and future demand is located in watersheds prone to drought stress.

More Details

Unintended consequences of atmospheric injection of sulphate aerosols

Goldstein, Barry G.; Kobos, Peter H.

Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

More Details

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling

Kobos, Peter H.; Roach, Jesse D.; Klise, Geoffrey T.; Krumhansl, James L.; Dewers, Thomas D.; Heath, Jason; Dwyer, Brian P.; Borns, David J.

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

More Details

A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis

Lord, Anna S.; Kobos, Peter H.; Borns, David J.

The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

More Details

Decision support for integrated water-energy planning

Tidwell, Vincent C.; Kobos, Peter H.; Malczynski, Leonard A.; Hart, William E.; Castillo, Cesar R.

Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

More Details

A Life Cycle Cost Analysis Framework for Geologic Storage of Hydrogen

Lord, Anna S.; Kobos, Peter H.; Borns, David J.

Large scale geostorage options for fuels including natural gas and petroleum offer substantial buffer capacity to meet or hedge against supply disruptions. This same notion may be applied to large scale hydrogen storage to meet industrial or transportation sector needs. This study develops an assessment tool to calculate the potential ‘gate-to-gate’ life cycle costs for large scale hydrogen geostorage options in salt caverns, and continues to develop modules for depleted oil/gas reservoirs and aquifers. The U.S. Department of Energy has an interest in these types of storage to assess the geological, geomechanical and economic viability for this type of hydrogen storage. Understanding, and looking to quantify, the value of large-scale storage in a larger hydrogen supply and demand infrastructure may prove extremely beneficial for larger infrastructure modeling efforts when looking to identify the most efficient means to fuel a hydrogen demand (e.g., industrial or transportation-centric demand). Drawing from the knowledge gained in the underground large scale storage options for natural gas and petroleum in the U.S., the potential to store relatively large volumes of CO2 in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

More Details

A Risk-Based System Analysis Framework for Geological Carbon Sequestration

Kobos, Peter H.

The purpose of this project was to characterize existing carbon capture and sequestration technologies at a high level, develop an analytical framework to help assess the technologies, and implement the framework in a system dynamics model. The first year of this project succeeded in characterizing existing technologies to help focus the analysis on power plants. The assessment also helped determine which technologies are largely accepted by the carbon capture research community as relatively proven technologies, discuss the salient performance metrics, and assess the associated economics. With this information, an analytical framework was developed to assess the technologies from a systems view perspective. With this framework, the Carbon Sequestration and Risk Model (CSR) was developed to assess performance and economic risk issues as they relate to global atmospheric CO2 concentration goals and single plant scale projects to characterize the economics of these systems.

More Details

Modeling the transfer of land and water from agricultural to urban uses in the Middle Rio Grande Basin, New Mexico

McNamara, Laura A.; Kobos, Peter H.; Malczynski, Leonard A.; Tidwell, Vincent C.

Social and ecological scientists emphasize that effective natural resource management depends in part on understanding the dynamic relationship between the physical and non-physical process associated with resource consumption. In this case, the physical processes include hydrological, climatological and ecological dynamics, and the non-physical process include social, economic and cultural dynamics among humans who do the resource consumption. This project represents a case study aimed at modeling coupled social and physical processes in a single decision support system. In central New Mexico, individual land use decisions over the past five decades have resulted in the gradual transformation of the Middle Rio Grande Valley from a primarily rural agricultural landscape to a largely urban one. In the arid southwestern U.S., the aggregate impact of individual decisions about land use is uniquely important to understand, because scarce hydrological resources will likely limit the viability of resulting growth and development trajectories. This decision support tool is intended to help planners in the area look forward in their efforts to create a collectively defined 'desired' social landscape in the Middle Rio Grande. Our research question explored the ways in which socio-cultural values impact decisions regarding that landscape and associated land use. Because of the constraints hydrological resources place on land use, we first assumed that water use, as embodied in water rights, was a reasonable surrogate for land use. We thought that modeling the movement of water rights over time and across water source types (surface and ground) would provide planners with insight into the possibilities for certain types of decisions regarding social landscapes, and the impact those same decisions would have on those landscapes. We found that water rights transfer data in New Mexico is too incomplete and inaccurate to use as the basis for the model. Furthermore, because of its lack of accuracy and completeness, water rights ownership was a poor indicator of water and land usage habits and patterns. We also found that commitment among users in the Middle Rio Grande Valley is to an agricultural lifestyle, not to a community or place. This commitment is conditioned primarily by generational cohort and past experience. If conditions warrant, many would be willing to practice the lifestyle elsewhere. A related finding was that sometimes the pressure to sell was not the putative price of the land, but the taxes on the land. These taxes were, in turn, a function of the level of urbanization of the neighborhood. This urbanization impacted the quality of the agricultural lifestyle. The project also yielded some valuable lessons regarding the model development process. A facilitative and collaborative style (rather than a top-down, directive style) was most productive with the inter-disciplinary , inter-institutional team that worked on the project. This allowed for the emergence of a process model which combined small, discipline- and/or task-specific subgroups with larger, integrating team meetings. The project objective was to develop a model that could be used to run test scenarios in which we explored the potential impact of different policy options. We achieved that objective, although not with the level of success or modeling fidelity which we had hoped for. This report only describes very superficially the results of test scenarios, since more complete analysis of scenarios would require more time and effort. Our greatest obstacle in the successful completion of the project was that required data were sparse, of poor quality, or completely nonexistent. Moreover, we found no similar modeling or research efforts taking place at either the state or local level. This leads to a key finding of this project: that state and local policy decisions regarding land use, development, urbanization, and water resource allocation are being made with minimal data and without the benefit of economic or social policy analysis.

More Details

Modeling conflict : research methods, quantitative modeling, and lessons learned

Malczynski, Leonard A.; Kobos, Peter H.; Rexroth, Paul E.; Hendrickson, Gerald A.; McNamara, Laura A.

This study investigates the factors that lead countries into conflict. Specifically, political, social and economic factors may offer insight as to how prone a country (or set of countries) may be for inter-country or intra-country conflict. Largely methodological in scope, this study examines the literature for quantitative models that address or attempt to model conflict both in the past, and for future insight. The analysis concentrates specifically on the system dynamics paradigm, not the political science mainstream approaches of econometrics and game theory. The application of this paradigm builds upon the most sophisticated attempt at modeling conflict as a result of system level interactions. This study presents the modeling efforts built on limited data and working literature paradigms, and recommendations for future attempts at modeling conflict.

More Details

Technological learning and renewable energy costs: implications for U.S. renewable energy policy

Proposed for publication in Energy Policy.

Kobos, Peter H.; Drennen, Thomas E.; Drennen, Thomas E.

This paper analyzes the relationship between current renewable energy technology costs and cumulative production, research, development and demonstration expenditures, and other institutional influences. Combining the theoretical framework of 'learning by doing' and developments in 'learning by searching' with the fields of organizational learning and institutional economics offers a complete methodological framework to examine the underlying capital cost trajectory when developing electricity cost estimates used in energy policy planning models. Sensitivities of the learning rates for global wind and solar photovoltaic technologies to changes in the model parameters are tested. The implications of the results indicate that institutional policy instruments play an important role for these technologies to achieve cost reductions and further market adoption.

More Details
149 Results
149 Results