Simulations of several of the end-irradiated cylindrical photoelectron driven cavity experiments (also known as B-Dot cavities) that were fielded during the July 1 through 2, 2020 shot series at the National Ignition Facility are presented in this report with comparisons to experimental measurements. All cavity B-Dots fielded on the second, third, fourth, fifth and seventh shots were simulated using coupled Integrated Tiger Series (ITS) Monte Carlo transport codes and the Electromagnetic Plasmas in Realistic Environments (EMPIRE) electromagnetic particle-in-cell code.
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.