Publications

Results 1–50 of 211

Search results

Jump to search filters

Computational Modeling Demonstrates the Joint Clearance Effect on the Tensile Strength of Solder Joints

Welding Journal

Vianco, Paul T.; Neilsen, Michael K.

Soldered joints can be made with a wide range of base materials and filler metals that allow the assembly to meet its performance and reliability requirements. Structural solder joints have, as their foremost requirement, to provide mechanical attachment between base material structures. The joint is typically subjected to one, or a combination of, three loading configurations: (a) tensile or compressive force, (b) shear force, or (c) peel force. Solder filler metals and in particular, the so-called “soft solders” based on tin (Sn), lead (Pb), and indium (In), generally have a bulk strength that is less than that of the base materials. Finally, deformation occurs largely in the solder when the joint is subjected to an applied force.

More Details

A Review of Interface Microstructures in Electronic Packaging Applications: Soldering Technology

JOM

Vianco, Paul T.

This report examines the role of interfaces in electronic packaging applications with the focus placed on soldering technology. Materials and processes are described with respect to their roles on the performance and reliability of associated interfaces. The discussion will also include interface microstructures created by coatings and finishes that are frequently used in packaging applications. Numerous examples are cited to illustrate the importance of interfaces in physical and mechanical metallurgy as well as the engineering function of interconnections. Regardless of the specific application, interfaces are non-equilibrium structures, which has important ramifications for the long-term reliability of electronic packaging.

More Details

Interface Reactions Responsible for Run-out in Active Brazing: Part 2

Welding Journal

Vianco, Paul T.; Walker, Charles; De Smet, Dennis; Kilgo, Alice C.; Mckenzie, Bonnie; Grant, Richard P.

This Part 2 study examined the microstructural characteristics of braze joints made between two KOVarTM base materials using the filler metals, Ag-xAl, having x = 0, 2, 5, and 10 wt.% Al additions. Brazing processes had temperatures of 965°C (1769°F) and 995°C and brazing times of 5 and 20 min. All brazing was performed under high vacuum.

More Details

Gold-Tin Solder Wetting Behavior for Package Lid Seals

Journal of Electronic Packaging

Vianco, Paul T.; Kilgo, Alice C.; Mckenzie, Bonnie

This study examined the cause of nonwetted regions of the gold (Au) finish on iron-nickel (Fe-Ni) alloy lids that seal ceramic packages using the 80Au-20Sn solder (wt %, abbreviated Au-Sn) and their impact on the final lid-to-ceramic frame solder joint. The Auger electron spectroscopy (AES) surface and depth profile techniques identified surface and through-thickness contaminants in the Au metallization layer. In one case, the AES analysis identified background levels of carbon (C) contamination on the surface; however, the depth profile detected Fe and Ni contaminants that originated from the plating process. The Fe and Ni could impede the completion of wetting and spreading to the edge of the Au metallization. The Au layer of lids not exposed to a Au-Sn solder reflow step had significant surface and through-thickness C contamination. Inorganic contaminants were absent. Subsequent simulated reflow processes removed the C contamination from the Au layer without driving Ni diffusion from the underlying solderable layer. An Au metallization having negligible C contamination developed elevated C levels after exposure to a simulated reflow process due to C contamination diffusing into it from the underlying Ni layer. However, the second reflow step removed that contamination from the Au layer, thereby allowing the metallization to support the formation of lid-to-ceramic frame Au-Sn joints without risk to their mechanical strength or hermeticity.

More Details

Grain Boundary Diffusion Characterized by KPFM

Baca, Ana B.; Brumbach, Michael T.; Vianco, Paul T.; Patterson, Burton; Scrymgeour, David

Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).

More Details

Grain Boundary Diffusion Characterized by KPFM

Baca, Ana B.; Brumbach, Michael T.; Vianco, Paul T.; Patterson, Pat; Scrymgeour, David

Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).

More Details

Interface Reactions Responsible for Run-Out in Active Brazing: Part 1

Welding Journal

Vianco, Paul T.; Walker, Charles; De Smet, Dennis; Kilgo, Alice C.; Mckenzie, Bonnie; Grant, Richard P.

The run-out phenomenon was observed in Ag-Cu-Zr active braze joints made between the alumina ceramic and Kovar™ base material. Run-out introduces a significant yield loss by generating functional and/or cosmetic defects in brazements. A prior study identified a correlation between run-out and the aluminum (Al) released by the reduction/oxidation and the latter’s reaction with the Kovar™ base material. A study was undertaken to understand the fundamental principles of run-out by examining the interface reaction between Ag-xAl filler metals (x=2, 5, and 10 wt.%) and Kovar™ base material. Sessile drop samples were fabricated using brazing temperatures of 965°C or 995°C and times of 5 min or 20 min. The correlation was made between the degree of wetting-and-spreading by the sessile drops and the run-out phenomenon. Wetting-and-spreading increased with Al content (x) of the Ag-xAl filler metal, but was largely insensitive to the brazing process parameters. The increased Al concentration resulted in higher Al contents of the (Fe, Ni, Co)xAly reaction layer. Run-out was predicted when the filler metal has a locally-elevated, Al content exceeding 2 – 5 wt.%. Lastly, several mitigation strategies were proposed, based upon these findings.

More Details

Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 2 - Reliability Performance

Welding Journal

Vianco, Paul T.

Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at the solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.

More Details

Understanding the reliability of solder joints used in advanced structural and electronics applications: Part 1 - Filler metal properties and the soldering process

Welding Journal

Vianco, Paul T.

Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting-and-spreading) to realize the proper joint geometry. Here, the soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance of the molten filler metal to successfully fill the gap and complete the fillet.

More Details

LTCC thick film process characterization

IMAPS/ACerS 12th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2016

Girardi, M.A.; Peterson, Kenneth A.; Vianco, Paul T.

Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. The LTCC thick film process is summarized including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels, 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.

More Details

Dynamic Recrystallization Model for Whisker and Hillock Growth

Applied Physics Review

Vianco, Paul T.; Neilsen, Michael K.

Tin (Sn) whiskers are not a recent development. Studies in the late 1930’s investigated thin filaments that grew spontaneously from Sn coatings used for the corrosion protection of electronic hardware. It was soon recognized that these Sn filaments, or whiskers, could create short circuits in the same electronic equipment. Figure 1a illustrates whisker growth in the hole of a printed circuit board having an immersion Sn surface finish. The engineering solution was to contaminate the Sn with > 3 wt.% of lead (Pb). The result was that whisker growth was replaced with hillock formation (Fig. 1b) that posed a minimal reliability concern to electrical circuits. Today, Pb-containing finishes are being replaced with pure Sn coatings to meet environmental restrictions on Pb use. The same short-circuit concerns have been raised, once again, with respect to Sn whiskers.

More Details

Dynamic Recrystallization Model for Whisker and Hillock Growth

Annual Physics Review

Vianco, Paul T.; Neilsen, Michael K.

Tin (Sn) whiskers are not a recent development. Studies in the late 1930’s investigated thin filaments that grew spontaneously from Sn coatings used for the corrosion protection of electronic hardware. It was soon recognized that these Sn filaments,or whiskers, could create short circuits in the same electronic equipment. Figure 1a illustrates whisker growth in the hole of a printed circuit board having an immersion Sn surface finish. The engineering solution was to contaminate the Sn with > 3wt.% of lead (Pb). The result was that whisker growth was replaced with hillock formation (Fig. 1b) that posed a minimal reliability concernto electrical circuits. Today, Pb-containing finishes are being replaced with pure Sn coatings to meet environmental restrictions on Pb use. The same short-circuit concerns have been raised, once again, with respect to Sn whiskers. The present authors have taken the approach that, in order to develop more widely applicable, first-principles strategies to mitigate Sn whisker formation, it is necessary to understand the fundamental mechanism(s) and rate kinetics underlying their development. Numerous mechanisms have been proposed by other authors to describe whisker growth, including static recrystallization by Boguslavsky and Bush.

More Details

Validation of the dynamic recrystallization (DRX) mechanism for whisker and hillock growth on thin films

Journal of Electronic Materials

Vianco, Paul T.; Neilsen, Michael K.; Rejent, Jerome A.; Grant, Richard P.

Our study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A D o m Z n , (2) DRX to be cyclic: D o < 2D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. Furthermore, a first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.

More Details
Results 1–50 of 211
Results 1–50 of 211