Publications

171 Results
Skip to search filters

Computational Modeling Demonstrates the Joint Clearance Effect on the Tensile Strength of Solder Joints

Welding Journal

Vianco, Paul T.; Neilsen, Michael K.

Soldered joints can be made with a wide range of base materials and filler metals that allow the assembly to meet its performance and reliability requirements. Structural solder joints have, as their foremost requirement, to provide mechanical attachment between base material structures. The joint is typically subjected to one, or a combination of, three loading configurations: (a) tensile or compressive force, (b) shear force, or (c) peel force. Solder filler metals and in particular, the so-called “soft solders” based on tin (Sn), lead (Pb), and indium (In), generally have a bulk strength that is less than that of the base materials. Finally, deformation occurs largely in the solder when the joint is subjected to an applied force.

More Details

The mechanical performance of Sn-Pb solder joints on LTCC substrates

Welding Journal

Vianco, Paul T.; Williams, S.; Kilgo, Alice C.; McKenzie, Bonnie B.; Price, W.; Guerrero, E.

The assembly of ceramic components often uses soldering technologies to attach metal structures to the ceramic base material. Because many suitable solder alloys do not readily wet and spread on ceramics, a metallization layer is deposited on the latter to support wetting and spreading by the molten solder for completion of the joint The metallization layer must be sufficiently robust to retain its integrity through the soldering process as well as not negatively impact the long-term reliability of the joint A study was performed to evaluate the mechanical properties of solder joints made to a 0.200Ti/W-40Cu-2.0Pt-0.375Au (pm) thin-film metallization deposited on low-temperature co-fired ceramic (LTCC) base materials. The solder joints were made with the 63Sn-37Pb solder (wt-%, abbreviated Sn-Pb). A pin pull test was developed to measure the tensile strength of the solder joint as a function of soldering parameters. Failure mode analysis was a critical metric for assessing the roles of interfaces, bulk solder, and the ceramic on mechanical performance. The Sn-Pb solder joints experienced a nominal strength loss with increased severity of the soldering process parameters. The strength decline was attributed to changes in the solder joint microstructure, and not degradation to the thin film structures.

More Details

A Review of Interface Microstructures in Electronic Packaging Applications: Soldering Technology

JOM

Vianco, Paul T.

This report examines the role of interfaces in electronic packaging applications with the focus placed on soldering technology. Materials and processes are described with respect to their roles on the performance and reliability of associated interfaces. The discussion will also include interface microstructures created by coatings and finishes that are frequently used in packaging applications. Numerous examples are cited to illustrate the importance of interfaces in physical and mechanical metallurgy as well as the engineering function of interconnections. Regardless of the specific application, interfaces are non-equilibrium structures, which has important ramifications for the long-term reliability of electronic packaging.

More Details

Gold-Tin Solder Wetting Behavior for Package Lid Seals

Journal of Electronic Packaging, Transactions of the ASME

Vianco, Paul T.; Kilgo, Alice C.; McKenzie, Bonnie B.

This study examined the cause of nonwetted regions of the gold (Au) finish on iron-nickel (Fe-Ni) alloy lids that seal ceramic packages using the 80Au-20Sn solder (wt %, abbreviated Au-Sn) and their impact on the final lid-to-ceramic frame solder joint. The Auger electron spectroscopy (AES) surface and depth profile techniques identified surface and through-thickness contaminants in the Au metallization layer. In one case, the AES analysis identified background levels of carbon (C) contamination on the surface; however, the depth profile detected Fe and Ni contaminants that originated from the plating process. The Fe and Ni could impede the completion of wetting and spreading to the edge of the Au metallization. The Au layer of lids not exposed to a Au-Sn solder reflow step had significant surface and through-thickness C contamination. Inorganic contaminants were absent. Subsequent simulated reflow processes removed the C contamination from the Au layer without driving Ni diffusion from the underlying solderable layer. An Au metallization having negligible C contamination developed elevated C levels after exposure to a simulated reflow process due to C contamination diffusing into it from the underlying Ni layer. However, the second reflow step removed that contamination from the Au layer, thereby allowing the metallization to support the formation of lid-to-ceramic frame Au-Sn joints without risk to their mechanical strength or hermeticity.

More Details

Grain Boundary Diffusion Characterized by KPFM

Baca, Ana B.; Brumbach, Michael T.; Vianco, Paul T.; Patterson, Pat P.; Scrymgeour, David S.

Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).

More Details

Interface reactions responsible for run-out in active brazing: Part 1

Welding Journal

Vianco, Paul T.; Walker, Charles A.; De Smet, Dennis J.; Kilgo, Alice C.; McKenzie, Bonnie B.; Grant, Richard P.

The run-out phenomenon was observed in Ag-Cu-Zr active braze joints made between the alumina ceramic and Kovar™ base material. Run-out introduces a significant yield loss by generating functional and/or cosmetic defects in brazements. A prior study identified a correlation between run-out and the aluminum (Al) released by the reduction/oxidation reaction with alumina and aluminum's reaction with the Kovar™ base material. A study was undertaken to understand the fundamental principles of run-out by examining the interface reaction between Ag-xAl filler metals (x = 2,5, and 10 wt-%) and Kovar™ base material. Sessile drop samples were fabricated using brazing temperatures of 965° (T769°F) or 995°C 0823°F) and times of 5 or 20 min. The correlation was made between the degree of wetting and spreading by the sessile drops and the run-out phenomenon. Wetting and spreading increased with Al content (x) of the. Ag-xAl filler metal, but was largely insensitive to the brazing process parameters. The increased Al concentration resulted in higher Al contents of the (Fe, Ni, Co)xAly reaction layer. Run-out was predicted when the filler metal has a locally elevated Al content exceeding 2-5 wt-%. Several mitigation strategies were proposed, based upon these findings.

More Details

Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 2 - Reliability Performance

Welding Journal

Vianco, Paul T.

Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at the solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.

More Details

Understanding the reliability of solder joints used in advanced structural and electronics applications: Part 1 - Filler metal properties and the soldering process

Welding Journal

Vianco, Paul T.

Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting-and-spreading) to realize the proper joint geometry. Here, the soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance of the molten filler metal to successfully fill the gap and complete the fillet.

More Details

LTCC thick film process characterization

IMAPS/ACerS 12th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2016

Girardi, M.A.; Peterson, K.A.; Vianco, Paul T.

Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. The LTCC thick film process is summarized including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels, 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.

More Details

Validation of the Dynamic Recrystallization (DRX) Mechanism for Whisker and Hillock Growth on Sn Thin Films

Journal of Electronic Materials

Vianco, Paul T.; Neilsen, Michael K.; Rejent, Jerome A.; Grant, Richard P.

A study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A Do mZn, (2) DRX to be cyclic: Do < 2Dr, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. A first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.

More Details

UCPD model for Pb-free solder

Journal of Electronic Packaging, Transactions of the ASME

Neilsen, Michael K.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for eutectic Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin-Manson relationship for solder fatigue. Next, developments needed to model crack initiation and growth in solder joints will be described. Finally, experimentally observed cracks in typical solder joints subjected to thermal mechanical fatigue are compared with model predictions. Finite element based modeling is particularly suited for predicting solder joint fatigue of advanced electronics packaging, e.g. package-on-package (PoP), because it allows for evaluation of a variety of package materials and geometries.

More Details

Laser ablation of thin films on LTCC

Proceedings - 2014 47th International Symposium on Microelectronics, IMAPS 2014

Girardi, M.A.; Peterson, K.A.; Vianco, Paul T.; Grondin, R.; Wieliczka, D.

Direct Digital Manufacturing techniques such as laser ablation are proposed for the fabrication of lower cost, miniaturized, and lightweight integrated assemblies with high performance requirements. This paper investigates the laser ablation of a Ti/Cu/Pt/Au thin film metal stack on fired low temperature cofired ceramic (LTCC) surfaces using a 355 nm Nd.YAG diode pumped laser ablation system. It further investigates laser ablation applications using unfil ed, or 'green', LTCC materials: (1) through one layer of a laminated stack of unfiled LTCC tape to a buried thick film conductor ground plane, and (2) in unfiled Au thick films. The UV laser power profile and part fixturing were optimized to address defects such as LTCC microcracking, thin film adhesion failures, and redeposition of Cu and Pt. An alternate design approach to minimize ablation time was tested for efficiency in manufacture. Multichip Modules (MCM) were tested for solder ability', solder leach resistance, and wire bondabilify. Scanning election microscopy (SEM) as well as cross sections and microanalytical techniques were used in this study.

More Details

Accelerated aging of Sn-Pb and Pb-free solder joints on hybrid microcircuit assemblies

IBSC 2012 - Proceedings of the 5th International Brazing and Soldering Conference

Vianco, Paul T.; Kilgo, Alice C.; Wroblewski, Brian W.; Zender, Gary L.; Guerrero, E.

The development of Pb-free solutions for the highreliability electronics community necessitates the consideration of hybrid microcircuit (HMC) products. This study used a test vehicle that included both plastic and ceramic packages as well as leaded and area-array solder joints on an alumina substrate. The conductor was a Ag-Pd thick film layer. The shear strength was measured for interconnections made with 63Sn-37Pb (wt.%, abbreviated Sn-Pb) and 95.5Sn-3.0Ag-0.5Cu (Sn-Ag-Cu) solders as a function of isothermal aging, thermal cycling, and thermal shock environments. The area-array packages indicated that solder joint fatigue was not altered significantly in a forward compatibility situation (i.e., Sn-Pb balls and a Sn-Ag-Cu assembly process). Local CTE mismatch fatigue strains are important for solder joints connecting ceramic area array packages to ceramic substrates. The gull-wing lead, SOT plastic package solder joints assembled with the Sn-Ag-Cu solder exhibit a greater strength loss under temperature cycling than did the corresponding Sn-Pb interconnections. Thermal shock is more detrimental to Sn-Pb HMC solder joints than are the equivalent number of thermal cycles. Copyright 2012 ASM International® All rights reserved.

More Details

Harsh environments electronics : downhole applications

Vianco, Paul T.

The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

More Details

Pull strength and failure mode analysis of thick film conductors on alumina ceramic for hybrid microcircuit technologies

Materials Science and Technology Conference and Exhibition 2010, MS and T'10

Vianco, Paul T.; Rejent, Jerome A.; Kilgo, Alice C.; Zender, Gary L.

Thick film conductors provide the circuitry for hybrid microcircuit (HMC) assemblies. The integrity of solder joints made to those conductors is a function of the solid-state interface reactions that occur under long-term service environments. A study was performed, which examined the mechanical strength of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to the thick film conductor, 76Au-21Pt-3Pd (Au-Pt-Pd), on 96% Al2O3 substrates. The Au-Pt-Pd layer was 18±3 μm thick. Isothermal aging accelerated the solder/thick film interface reaction, which resulted in the growth of an intermetallic compound (IMC) layer and consumption of the thick film layer. The aging temperatures were 70°C, 100°C, and 135°C. The aging times were 5-5000 hours. The sheppard's hook pull test was used to assess the strength of the Sn-Pb solder joints at two displacement rates: 10 mm/min and 100 mm/min. A measurable loss of joint strength was observed after aging, which did not generate a great deal of IMC layer growth. The aging effects occurred at the thick film/Al2O3 interface as concluded by other authors. However, the present investigation showed those strength losses to be reversible after more extended aging times at elevated temperature. The strength and failure modes were sensitive to displacement rate when IMC layer development was minimal. Extensive growth of the IMC layer was accompanied by the formation of a Pb-rich layer ahead of it, which was responsible for a gradual decrease in the pull strength. In this case, pull strength and failure mode were less sensitive to displacement rate. The solder joints maintained a nominal level of pull strength, even after nearly all of the thick film conductor had been consumed by IMC layer formation. Copyright © 2010 MS&T'10®.

More Details

A constitutive model for Sn-Pb solder

Neilsen, Michael K.; Boyce, Brad B.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for Sn-Pb solder is developed in this paper. Stephens and Frear (1999) studied the creep behavior of near-eutectic 60Sn-40Pb solder subjected to low strain rates and found that the inelastic (creep and plastic) strain rate could be accurately described using a hyperbolic Sine function of the applied effective stress. A recently developed high-rate servo-hydraulic method was employed to characterize the temperature and strain-rate dependent stress-strain behavior of eutectic Sn-Pb solder over a wide range of strain rates (10{sup -4} to 10{sup 2} per second). The steady state inelastic strain rate data from these latest experiments were also accurately captured by the hyperbolic Sine equation developed by Stephens and Frear. Thus, this equation was used as the basis for the UCPD model for Sn-Pb solder developed in this paper. Stephens, J.J., and Frear, D.R., Metallurgical and Materials Transactions A, Volume 30A, pp. 1301-1313, May 1999.

More Details

Age-aware solder performance models : level 2 milestone completion

Holm, Elizabeth A.; Neilsen, Michael K.; Vianco, Paul T.; Neidigk, Matthew N.

Legislated requirements and industry standards are replacing eutectic lead-tin (Pb-Sn) solders with lead-free (Pb-free) solders in future component designs and in replacements and retrofits. Since Pb-free solders have not yet seen service for long periods, their long-term behavior is poorly characterized. Because understanding the reliability of Pb-free solders is critical to supporting the next generation of circuit board designs, it is imperative that we develop, validate and exercise a solder lifetime model that can capture the thermomechanical response of Pb-free solder joints in stockpile components. To this end, an ASC Level 2 milestone was identified for fiscal year 2010: Milestone 3605: Utilize experimentally validated constitutive model for lead-free solder to simulate aging and reliability of solder joints in stockpile components. This report documents the completion of this milestone, including evidence that the milestone completion criteria were met and a summary of the milestone Program Review.

More Details

Compression stress-strain behavior of Sn-Ag-Cu solders

Journal of Electronic Materials

Lopez, Edwin P.; Vianco, Paul T.; Rejent, Jerome A.; George, Carly S.; Kilgo, Alice C.

New Pb-free alloys that are variations of the Sn-Ag-Cu (SAC) ternary system, having reduced Ag content, are being developed to address the poor shock load survivability of current SAC305, SAC396, and SAC405 compositions. However, the thermal mechanical fatigue properties must be determined for the new alloys in order to develop constitutive models for predicting solder joint fatigue. A long-term study was initiated to investigate the time-independent (stress-strain) and time-dependent (creep) deformation properties of the alloy 98.5Sn-1.0Ag-0.5Cu (wt.% SAC105). The compression stress-strain properties, which are reported herein, were obtained for the solder in as-cast and aged conditions. The test temperatures were -25°C, 25°C, 75°C, 125°C, and 160°C and the strain rates were 4.2 × 10 -5 s -1 and 8.3 × 10 -4s -1. The SAC105 performance was compared with that of the 95.5Sn-3.9Ag-0.6Cu (SAC396) solder. Like the SAC396 solder, the SAC105 microstructure exhibited only small microstructural changes after deformation. The stress-strain curves showed work-hardening behavior that diminished with increased temperature to a degree that indicated dynamic recrystallization activity. The aging treatment had a small effect on the stress-strain curves, increasing the degree of work hardening. The yield stresses of SAC105 were significantly less than those of SAC396. The aging treatment caused a small drop in yield stress, as is observed with the SAC396 material. The static modulus values of SAC105 were lower than those of SAC396 and exhibited both temperature and aging treatment dependencies that differed from those of the SAC396 material. These trends clearly show that the stress-strain behavior of Sn-Ag-Cu solders is sensitive to the specific, individual composition. © 2009 U.S. Department of Energy.

More Details

An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates

Vianco, Paul T.; Kilgo, Alice C.; Zender, Gary L.; Rejent, Jerome A.; Grazier, J.M.

The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

More Details

AWS breaks new ground with soldering specification

Proposed for publication in Welding Journal.

Vianco, Paul T.

Joining technologies continue to advance with new materials, process innovations, and inspection techniques. An increasing number of high-valued, high-reliability applications -- from boilers and ship hulls to rocket motors and medical devices -- have required the development of industry standards and specifications in order to ensure that the best design and manufacturing practices are being used to produce safe, durable products and assemblies. Standards writing has always had an important role at the American Welding Society (AWS). The AWS standards and specifications cover such topics as filler materials, joining processes, inspection techniques, and qualification methods that are used in welding and brazing technologies. These AWS standards and specifications, all of which are approved by the American National Standards Institute (ANSI), have also provided the basis for many similar documents used in Europe and in Pacific Rim countries.

More Details

The effects of long-term storage on the solderability of immersion silver coatings

Proceedings of the 3rd International Brazing and Soldering Conference

Lopez, Edwin P.; Vianco, Paul T.; Lucero, Samuel J.; Buttry, R.W.; Rejent, Jerome A.; Martin, Joseph

The solderability of an immersion Ag finish was evaluated after the exposure of test specimens to a Battelle Class II environment, which accelerates the storage conditions of light industrial surroundings. The solderability metric was the contact angle, (θC), as determined by the meniscometer/wetting balance technique. Auger surface and depth profile analyses were utilized to identify changes in the coating chemistry. The solderability test results indicate that there was no appreciable loss in solderability when the immersion Ag coated coupons were packaged in vapor phase corrosion (VPC) inhibitor bags and/or inhibitor bags with VPC inhibitor paper and aged for 8 hours, 1 week or 2 weeks in the Battelle Class II environment. An increase in surface carbon concentration after aging did not appear to significantly affect solderability. Copyright © 2006 ASM International®.

More Details

An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87)

Vianco, Paul T.; Kilgo, Alice C.; Zender, Gary L.; Hlava, Paul F.

The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of remelting of the spring finger solder joint. The Cd (Cr) layer did not show signs of spalling. These results suggested that, due to the size of the SA1358-10 connector, any of the former or current soldering processes used to attach the EMR adapter ring and/or EMR shell to the connector shell, requires a level of heat energy that will always result in the remelting of the spring finger solder joint attached with either the Sn-Ag or the Sn-Sb alloy. Lastly, it was construed that the induction soldering process, which is used to attach the EMR adapter ring onto the shell, was more likely to have caused the remelting event rather than the more localized heat source of the hand soldering iron used to attach the EMR shell to the adapter ring.

More Details

Solderability study of 63Sn-37Pb on zinc-plated and cadmium-plated stainless steel for the MC4636 lightning arrestor connector

Vianco, Paul T.; Rejent, Jerome A.

Cadmium plating on metal surfaces is commonly used for corrosion protection and to achieve good solderability on the 304L stainless steel shell of the MC4636 lightning arrestor connector (LAC) for the W76-1 system. This study examined the use of zinc as a potential substitute for the cadmium protective surface finish. Tests were performed with an R and RMA flux and test temperatures of 230 C, 245 C, and 260 C. Contact angle, {theta}{sub c}, served as the generalized solderability metric. The wetting rate and wetting time parameters were also collected. The solderability ({theta}{sub c}) of the Erie Plating Cd/Ni coatings was better than that of similar Amphenol coatings. Although the {theta}{sub c} data indicated that both Cd/Ni platings would provide adequate solderability, the wetting rate and wetting time data showed the Amphenol coatings to have better performance. The Zn/Ni coatings exhibited non-wetting under all flux and temperature conditions. Based on the results of these tests, it has been demonstrated that zinc plating is not a viable alternate to cadmium plating for the LAC connectors.

More Details

Development of Sn-based, low melting temperature Pb-free solder alloys

Proposed for publication in Materials Transactions (Japan Institute of Metals).

Vianco, Paul T.; Vianco, Paul T.; Rejent, Jerome A.; Grant, Richard P.

Low temperature, Sn-based Pb-free solders were developed by making alloy additions to the starting material, 96.5Sn-3.5Ag (mass%). The melting behavior was determined using Differential Scanning Calorimetry (DSC). The solder microstructure was evaluated by optical microscopy and electron probe microanalysis (EPMA). Shear strength measurements, hardness tests, intermetallic compound (IMC) layer growth measurements, and solderability tests were performed on selected alloys. Three promising ternary alloy compositions and respective solidus temperatures were: 91.84Sn-3.33Ag-4.83Bi, 212 C; 87.5Sn-7.5Au-5.0Bi, 200 C; and 86.4Sn-5.1 Ag-8.5Au, 205 C. A quaternary alloy had the composition 86.8Sn-3.2Ag-5.0Bi-5.0Au and solidus temperature of 194 C The shear strength of this quaternary alloy was nearly twice that of the eutectic Sn-Pb solder. The 66Sn-5.0Ag-10Bi-5.0Au-101n-4.0Cu alloy had a solidus temperature of 178 C and good solderability on Cu. The lowest solidus temperature of 159 C was realized with the alloy 62Sn-5.0Ag-10Bi-4.0Au-101n-4.0Cu-5.0Ga. The contributing factor towards the melting point depression was the composition of the solid solution, Sn-based matrix phase of each solder.

More Details

Acceleration models, constitutive equations, and reliability of lead-free solders and joints

Proceedings - Electronic Components and Technology Conference

Lau, John; Dauksher, Walter; Vianco, Paul T.

A set of acceleration models for lead-free solder joints is proposed and discussed in this study. Useful equations for the acceleration models, life distribution, and failure rate are also provided. Furthermore, methods for selecting the acceleration factor are discussed. In addition, non-linear 3D creep analyses of the 256-pin plastic ball grid array PCB (printed circuit board) assembly are presented. The solder joints are made of 95.5wt%Sn-3.9wt%Ag-0.6wt%Cu lead-free solder. The lead-free results will be compared to those with Sn-Pb solder joints.

More Details

Lead (Pb)-Free Solder Applications

Vianco, Paul T.

Legislative and marketing forces both abroad and in the US are causing the electronics industry to consider the use of Pb-free solders in place of traditional Sn-Pb alloys. Previous case studies have demonstrated the satisfactory manufacturability and reliability of several Pb-free compositions for printed circuit board applications. Those data, together with the results of fundamental studies on Pb-free solder materials, have indicated the general feasibility of their use in the broader range of present-day, electrical and electronic components.

More Details

Joining SI3N4 for Advanced Turbomachinery Applications

Glass, Sarah J.; Loehman, Ronald E.; Hosking, F.M.; Stephens, John J.; Vianco, Paul T.; Neilsen, Michael K.; Walker, Charles A.

The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of the stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.

More Details

A new active solder for joining electronic components

Vianco, Paul T.; Schwartz, Cynthia L.; Vianco, Paul T.

Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

More Details

The impact of process parameters on gold elimination from soldered connector assemblies

Assembly Automation

Vianco, Paul T.; Kilgo, Alice C.

Minimizing the likelihood of solder joint embrittlement in connectors is realized by reducing or eliminating retained Au plating and/or Au-Sn intermetallic compound formation from the assemblies. Gold removal is performed most effectively by using a double wicking process. When only a single wicking procedure can be used, a higher soldering temperature improves the process of Au removal from the connector surfaces and to a nominal extent, removal of Au-contaminated solder from the joint. A longer soldering time did not appear to offer any appreciable improvement toward removing the Au-contaminated solder from the joint. Because the wicking procedure was a manual process, it was operator dependent.

More Details

Hybrid microcircuit board assembly with lead-free solders

Vianco, Paul T.; Schwartz, Cynthia L.; Rejent, Jerome A.

An assessment was made of the manufacturability of hybrid microcircuit test vehicles assembled using three Pb-free solder compositions 96.5Sn--3.5Ag (wt.%), 91.84Sn--3.33Ag--4.83Bi, and 86.85Sn--3.15Ag--5.0Bi--5.0Au. The test vehicle substrate was 96% alumina; the thick film conductor composition was 76Au--21Pt--3Pd. Excellent registration between the LCCC or chip capacitor packages and the thick film solder pads was observed. Reduced wetting of bare (Au-coated) LCCC castellations was eliminated by hot solder dipping the I/Os prior to assembly of the circuit card. The Pb-free solders were slightly more susceptible to void formation, but not to a degree that would significantly impact joint functionality. Microstructural damage, while noted in the Sn-Pb solder joints, was not observed in the Pb-free interconnects.

More Details
171 Results
171 Results