Publications

Results 1–50 of 318
Skip to search filters

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

DelRio, Frank W.; Grutzik, Scott J.; Mook, William M.; Dickens, Sara D.; Kotula, Paul G.; Hintsala, Eric H.; Stauffer, Douglas S.; Boyce, Brad B.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

The growth and nanothermite reaction of 2Al/3NiO multilayer thin films

Journal of Applied Physics

Abere, Michael J.; Beason, Matthew T.; Reeves, Robert V.; Rodriguez, Mark A.; Kotula, Paul G.; Sobczak, Catherine E.; Son, Steven F.; Yarrington, Cole D.; Adams, David P.

Nanothermite NiO–Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, E a  = 49 ± 3 kJ/mole). Multilayers having λ ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al ( E a  = 30 ± 4 kJ/mole). This solid/liquid dissolution E a is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.

More Details

Formation of Al3Sc in Al0.8Sc0.2 thin films

Vacuum

Esteves, Giovanni E.; Bischoff, Joseph; Schmidt, Ethan W.; Rodriguez, Mark A.; Rosenberg, Samantha G.; Kotula, Paul G.

The formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.

More Details

Compositional Effects of Additively Manufactured Refractory High‐Entropy Alloys under High‐Energy Helium Irradiation

Nanomaterials

Lang, Eric J.; Burns, Kory; Wang, Yongqiang; Kotula, Paul G.; Kustas, Andrew K.; Rodriguez, Sal; Aitkaliyeva, Assel; Hattar, Khalid M.

High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.

More Details

The effect of metal–insulator interface interactions on electrical transport in granular metals

Journal of Physics. Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas G.; Biedermann, Laura B.; Siegal, Michael P.

Here, we present an in-depth study of metal–insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2–0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7–2.6 nm average diameters and percolation thresholds between φ = 0.4–0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal–insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal–insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Variable Laser Ignition Pathways in Al/Pt Reactive Multilayers across 10 Decades of Pulse Duration

Journal of Physical Chemistry C

Abere, Michael J.; Yarrington, Cole D.; Kotula, Paul G.; McDonald, Joel P.; Adams, David P.

Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.

More Details

TEM Studies of Segregation in a Ge–Sb–Te Alloy During Heating

Springer Proceedings in Materials

Singh, Manish K.; Ghosh, Chanchal; Tripathi, Shalini; Kotula, Paul G.; Bakan, Gokhan; Silva, Helena; Carter, C.B.

Phase-change materials are important for optical and electronic computing memory. Ge–Sb–Te (GST) is one of the important phase-change materials and has been studied extensively for fast, reversible, and non-volatile electronic phase-change memory. GST exhibits structural transformations from amorphous to metastable fcc at ~150 ℃ and fcc to hcp at ~300 ℃. The investigation of the structural, microstructural, and microchemical changes with high-temporal resolution during heating is crucial to gain insights on the changes that materials undergo during phase transformations. The as-deposited GST film has amorphous island morphology which transform to the metastable fcc phase at ~130 ℃. The second-phase transformation, from fcc to hexagonal, is observed at ~170 ℃. While the as-deposited amorphous islands show a homogeneous distribution of Ge, Sb and Te, these islands boundaries become Ge-rich after heating. Morphological and structural evolutions were captured during heating inside an aberration corrected environmental TEM equipped with a high-speed camera under a low-dose conditions to minimize beam-induced changes in the samples. Microchemical studies were carried out employing ChemiSTEM technique in probe-corrected mode with a monochromated beam.

More Details

Characterization of Amplification Properties of the Superconducting-Ferromagnetic Transistor

IEEE Transactions on Applied Superconductivity

Nevirkovets, Ivan P.; Kojima, Takafumi; Uzawa, Yoshinori; Kotula, Paul G.; Missert, Nancy A.; Mukhanov, Oleg A.

We report on the measurement results of the superconducting-ferromagnetic transistors (SFTs). The devices were made at Northwestern University and Hypres (SeeQC), Inc. (Nevirkovets et al., 2014; 2015). SFT is a multiterminal device with the SISFIFS (or SFIFSIS) structure (where S, I, and F denote a superconductor, an insulator, and a ferromagnetic material, respectively) exploiting intense quasiparticle injection in order to modify the nonlinear I-V curve of a superconducting tunnel junction. SFT is capable of providing voltage, current, and power amplification while having good input/output isolation. We characterized the devices using different measurement techniques. We measured S parameters of the single- and double-acceptor devices at frequencies up to 5 MHz. Importantly, we confirmed that the isolation between the input and output of the device is quite good. However, the techniques typically employed to characterize semiconductor devices do not allow for revealing the full potential of our low-resistive SFT devices, especially those having two acceptors. In the latter case, we also tested the devices using the battery-powered current sources with floating grounds. Analyzing double-acceptor I-V curves recorded at different levels of injection currents, for an optimal load, we deduced a small-signal voltage gain of 33 and a power gain of 2.4. We suggest that further improvement of the SFT device parameters is possible in optimized devices, so that the device potentially may serve as a preamplifier for readout of output signals of cryogenic detectors and be useful as an element of other superconductor-based circuits. In addition, we used scanning transmission electron microscopy to identify some problems in the fabrication of the devices without any planarization.

More Details

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

Role of Oxygen on Chemical Segregation in Uncapped Ge2Sb2Te5 Thin Films on Silicon Nitride

ECS Journal of Solid State Science and Technology

Tripathi, Shilini T.; Kotula, Paul G.; Singh, Manish K.; Ghosh, Chanchal G.; Bakan, Gokhan B.; Silva, Helena S.; Carter, Clive B.

Germanium antimony telluride has been the most used and studied phase-change material for electronic memory due to its suitable crystallization temperature, amorphous to crystalline resistance contrast, and stability of the amorphous phase. In this paper, the segregation of Ge in a Ge2Sb2Te5 film of 30 nm thickness during heating inside the transmission electron microscope was observed and characterized. Furthermore, Ge2Sb2Te5 film was deposited using sputtering on a Protochips Fusion holder and left uncapped in atmosphere for about four months. Oxygen incorporated within the film played a significant role in the chemical segregation observed which resulted in amorphous Ge-O island boundaries and Sb and Te rich crystalline domains. Such composition changes can occur when the phase-change material interfaces insulating oxide layers in an integrated device and can significantly impact its electrical and thermal properties.

More Details

Complexion dictated thermal resistance with interface density in reactive metal multilayers

Physical Review B

Saltonstall, Christopher B.; McClure, Zachary D.; Abere, Michael J.; Guzman, David; Reeve, Samuel T.; Strachan, Alejandro; Kotula, Paul G.; Adams, David P.; Beechem, Thomas E.

Multilayers composed of aluminum (Al) and platinum (Pt) exhibit a nonmonotonic trend in thermal resistance with bilayer thickness as measured by time domain thermoreflectance. The thermal resistance initially increases with reduced bilayer thickness only to reach a maximum and then decrease with further shrinking of the multilayer period. These observations are attributed to the evolving impact of an intermixed amorphous complexion approximately 10 nm in thickness, which forms at each boundary between Al- and Pt-rich layers. Scanning transmission electron microscopy combined with energy dispersive x-ray spectroscopy find that the elemental composition of the complexion varies based on bilayer periodicity as does the fraction of the multilayer composed of this interlayer. These variations in complexion mitigate boundary scattering within the multilayers as shown by electronic transport calculations employing density-functional theory and nonequilibrium Green's functions on amorphous structures obtained via finite temperature molecular dynamics. The lessening of boundary scattering reduces the total resistance to thermal transport leading to the observed nonmonotonic trend thereby highlighting the central role of complexion on thermal transport within reactive metal multilayers.

More Details

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Hayden, Steven C.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.; Jungjohann, Katherine L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Spin transport in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer as a function of temperature

AIP Advances

Chen, Yizhang; Cogulu, Egecan; Roy, Debangsu; Ding, Jinjun; Mohammadi, Jamileh B.; Kotula, Paul G.; Missert, Nancy A.; Wu, Mingzhong; Kent, Andrew D.

We present a study of the transport properties of thermally generated spin currents in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer over a wide range of temperature. Spin currents generated by the spin Seebeck effect (SSE) in a yttrium iron garnet (YIG) YIG/NiO/YIG trilayer on a gadolinium gallium garnet (GGG) substrate were detected using the inverse spin Hall effect (ISHE) in Pt. By studying samples with different NiO thicknesses, the spin diffusion length of NiO was determined to be ∼3.8 nm at room temperature. Surprisingly, a large increase of the SSE signal was observed below 30 K, and the field dependence of the signal closely follows a Brillouin function for an S=7/2 spin. The increase of the SSE signal at low temperatures could thus be associated with the paramagnetic SSE from the GGG substrate. Besides, a broad peak in the SSE response was observed around 100 K. These observations are important in understanding the generation and transport properties of spin currents through magnetic insulators and the role of a paramagnetic substrate in spin current generation.

More Details

Visualization of Kirkendall Voids at Cu-Au Interfaces by In Situ TEM Heating Studies

JOM

Kotula, Paul G.; Prasad, Somuri V.

Gold-plated copper alloys are used extensively in electrical contacts where diffusional processes are known to cause contact degradation. An in situ transmission electron microscopy (TEM) heating study was carried out to provide fundamental understanding of the aging phenomena in reasonable timescales. Samples to visualize the interface in TEM were prepared by focused ion beam (FIB) microscopy and heated in situ up to 350°C while holding at intermediate temperatures to enable imaging. The grain boundaries in Au coatings, specifically the columnar boundaries, provided rapid pathways for diffusion of Cu all the way to the Au surface. This unequal diffusion created vacancies in Cu which coalesced into Kirkendall voids. This in situ technique has been applied to visualize the diffusion pathways in electroplated and sputtered Au films deposited directly on Cu, as well the role of Ni and NiP as barrier layers for mitigating Cu diffusion.

More Details

Thickness dependence of Al0.88Sc0.12N thin films grown on silicon

Thin Solid Films

Knisely, Kathrine E.; Douglas, Erica A.; Mudrick, John M.; Rodriguez, Mark A.; Kotula, Paul G.

The thickening behavior of aluminum scandium nitride (Al0.88Sc0.12N) films grown on Si(111) substrates has been investigated experimentally using X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy, and residual stress measurement. Al0.88Sc0.12N films were grown with thicknesses spanning 14 nm to 1.1 um. TEM analysis shows that the argon sputter etch used to remove the native oxide prior to deposition produced an amorphous, oxygen-rich surface, preventing epitaxial growth. XRD analysis of the films show that the A1ScN(002) orientation improves as the films thicken and the XRD A1ScN(002) rocking curve full width half maximum decreases to 1.34 q for the 1.1 pm thick film. XRD analysis shows that the unit cell is expanded in both the a- and c-axes by Sc doping; the a-axis lattice parameter was measured to be 3.172 ± 0.007 A and the c-axis lattice parameter was measured to be 5.000 ± 0.001 A, representing 1.96% and 0.44% expansions over aluminum nitride lattice parameters, respectively. The grain size and roughness increase as the film thickness increases. A stress gradient forms through the film; the residual stress grows more tensile as the film thickens, from -1.24 GPa to +8.5MPa.

More Details
Results 1–50 of 318
Results 1–50 of 318