Publications

10 Results
Skip to search filters

An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87)

Vianco, Paul T.; Kilgo, Alice C.; Zender, Gary L.; Hlava, Paul F.

The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of remelting of the spring finger solder joint. The Cd (Cr) layer did not show signs of spalling. These results suggested that, due to the size of the SA1358-10 connector, any of the former or current soldering processes used to attach the EMR adapter ring and/or EMR shell to the connector shell, requires a level of heat energy that will always result in the remelting of the spring finger solder joint attached with either the Sn-Ag or the Sn-Sb alloy. Lastly, it was construed that the induction soldering process, which is used to attach the EMR adapter ring onto the shell, was more likely to have caused the remelting event rather than the more localized heat source of the hand soldering iron used to attach the EMR shell to the adapter ring.

More Details

Stress creation during Ni-Mn alloy electrodeposition

Proposed for publication in the Journal of Applied Physics.

Hearne, Sean J.; Brewer, Luke N.; Foiles, Stephen M.; Floro, Jerrold A.; Frazer, Colleen S.; Tissot, Ralph G.; Rodriguez, Marko A.; Hlava, Paul F.

The stress evolution during electrodeposition of NiMn from a sulfamate-based bath was investigated as a function of Mn concentration and current density. The NiMn stress evolution with film thickness exhibited an initial high transitional stress region followed by a region of steady-state stress with a magnitude that depended on deposition rate, similar to the previously reported stress evolution in electrodeposited Ni [S. J. Hearne and J. A. Floro, J. Appl. Phys. 97, 014901-1 (2005)]. The incorporation of increasing amounts of Mn resulted in a linear increase in the steady-state stress at constant current density. However, no significant changes in the texture or grain size were observed, which indicates that an atomistic process is driving the changes in steady-state stress. Additionally, microstrain measured by ex situ x-ray diffraction increased with increasing Mn content, which was likely the result of localized lattice distortions associated with substitutional incorporation of Mn and/or increased twin density.

More Details

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants

Brosseau, Douglas A.; Hlava, Paul F.; Kelley, Michael J.

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

More Details
10 Results
10 Results