Publications

12 Results
Skip to search filters

Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

Surface and Coatings Technology

Withey, Elizabeth A.; Kruizenga, Alan M.; Andraka, Charles E.; Gibbs, Paul J.

The performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear signs of failure. Due to a lack of reliable melting in the PCM, these results are attributed to the evolution of gaseous Mg leading to the formation of MgO and MgAl2O4.

More Details

Copper-silicon-magnesium alloys for latent heat storage

Metallurgical and Materials Transactions. E, Materials for Energy Systems

Gibbs, Paul J.; Withey, Elizabeth A.; Coker, Eric N.; Kruizenga, Alan M.; Andraka, Charles E.

The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

More Details

Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

AIP Conference Proceedings

Kruizenga, Alan M.; Withey, Elizabeth A.; Andraka, Charles E.; Gibbs, Paul J.

Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

More Details

Comparison of internal and external hydrogen on fatigue-life of austenitic stainless steels

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Gibbs, Paul J.; San Marchi, Christopher W.; Nibur, Kevin A.; Tang, Xiaoli

The degradation of stress-controlled fatigue-life (stress-life) of notched specimens was measured in the presence of internal and in external hydrogen for two strain-hardened austenitic stainless steels: 316L and 21Cr-6Ni-9Mn. To assess the sensitivity of fatigue performance to various hydrogen conditions fatigue tests were performed in four environments: (1) in air with no added hydrogen, (2) in air after hydrogen pre-charging to saturate the steel with internal hydrogen, and in external gaseous hydrogen at pressure of (3)10 MPa (1.45 ksi), or (4) 103 MPa (15 ksi). The fatigue performance of the strain-hardened 316L and 21Cr-6Ni-9Mn steels in air was indistinguishable for the tested conditions. Decreases in the fatigue-life at a given stress level were measured in the presence of hydrogen and depended on the hydrogen environment. Testing in 103 MPa (15 ksi) external gaseous hydrogen always resulted in a clear decrease in the fatigue-life at a given maximum stress. Alloy dependent reductions in the observed life at a given maximum stress were observed in the presence of internal hydrogen or in gaseous hydrogen at a pressure of 10 MPa (1.45 ksi). The measured fatigue-life of hydrogen pre-charged specimens was comparable to the life with no intentional hydrogen additions. Accounting for the increased flow stress resulting from the supersaturation of hydrogen after pre-charging results in consistency between the measured fatigue-life of the pre-charged condition and measurements in 103 MPa (15 ksi) external hydrogen. The current results indicate that internal hydrogen may be an efficient method to infer hydrogen-assisted fatigue degradation of stainless steels in high-pressure gaseous hydrogen.

More Details
12 Results
12 Results