Publications

Results 1–25 of 96
Skip to search filters

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Nonreciprocal Frequency Domain Beam Splitter

Physical Review Letters

Otterstrom, Nils T.; Gertler, Shai; Kittlaus, Eric A.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Rakich, Peter T.; Davids, Paul D.; Lentine, Anthony L.

The canonical beam splitter - a fundamental building block of quantum optical systems - is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10-4) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.

More Details

Microwave response in a topological superconducting quantum interference device

Scientific Reports

Pan, Wei P.; Soh, Daniel B.; Yu, Wenlong; Davids, Paul D.; Nenoff, T.M.

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of large microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.

More Details

Stabilization of ferroelectric phase of Hf0.6Zr0.4O2 on NbN and Nb [slides]

Henry, Michael D.; Davids, Paul D.; Esteves, Giovanni E.; Young, Travis R.; Wolfley, Steven L.; smith, Sean W.; Fields, Shelby S.; Ihlefeld, Jon &.

This work demonstrated both NbN and Nb make good electrodes for stabilizing orthorhombic phase of Hf0.6Zr0.4O2 ferroelectric films. Wake up are < 100 cycles. Pr can be as high as 30 µC/cm2 - respectively 14 and 18 µC/cm2 here. Further, capacitance suggests an orthorhombic phase can be stabilized. Addition of a linear dielectric under modest thickness can tune the Pr and reduce leakage.

More Details

Metal Nitride Electrode Stress and Chemistry Effects on Phase and Polarization Response in Ferroelectric Hf0.5Zr0.5O2 Thin Films

Advanced Materials Interfaces

Fields, Shelby S.; Smith, Sean W.; Fancher, Chris M.; Henry, Michael D.; Wolfley, Steven L.; Sales, Maria G.; Jaszewski, Samantha T.; Rodriguez, Mark A.; Esteves, Giovanni E.; Davids, Paul D.; McDonnell, Stephen J.; Ihlefeld, Jon F.

Ferroelectric phase stability in hafnium oxide is reported to be influenced by factors that include composition, biaxial stress, crystallite size, and oxygen vacancies. In the present work, the ferroelectric performance of atomic layer deposited Hf0.5Zr0.5O2 (HZO) prepared between TaN electrodes that are processed under conditions to induce variable biaxial stresses is evaluated. The post-processing stress states of the HZO films reveal no dependence on the as-deposited stress of the adjacent TaN electrodes. All HZO films maintain tensile biaxial stress following processing, the magnitude of which is not observed to strongly influence the polarization response. Subsequent composition measurements of stress-varied TaN electrodes reveal changes in stoichiometry related to the different preparation conditions. HZO films in contact with Ta-rich TaN electrodes exhibit higher remanent polarizations and increased ferroelectric phase fractions compared to those in contact with N-rich TaN electrodes. HZO films in contact with Ta-rich TaN electrodes also have higher oxygen vacancy concentrations, indicating that a chemical interaction between the TaN and HZO layers ultimately impacts the ferroelectric orthorhombic phase stability and polarization performance. The results of this work demonstrate a necessity to carefully consider the role of electrode processing and chemistry on performance of ferroelectric hafnia films.

More Details

Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies

PRX Quantum

Awschalom, David; Berggren, Karl K.; Bernien, Hannes; Bhave, Sunil; Carr, Lincoln D.; Davids, Paul D.; Economou, Sophia E.; Englund, Dirk; Faraon, Andrei; Fejer, Martin; Guha, Saikat; Gustafsson, Martin V.; Hu, Evelyn; Jiang, Liang; Kim, Jungsang; Korzh, Boris; Kumar, Prem; Kwiat, Paul G.; Lončar, Marko; Lukin, Mikhail D.; Miller, David A.B.; Monroe, Christopher; Nam, Sae W.; Narang, Prineha; Orcutt, Jason S.; Raymer, Michael G.; Safavi-Naeini, Amir H.; Spiropulu, Maria; Srinivasan, Kartik; Sun, Shuo; Vučković, Jelena; Waks, Edo; Walsworth, Ronald; Weiner, Andrew M.; Zhang, Zheshen

Just as "classical"information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the "interconnect,"a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a "quantum internet"poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on "Quantum Interconnects"that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry, and national laboratories is required.

More Details

Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance

Goldflam, Michael G.; Anderson, Evan M.; Fortune, Torben R.; Klem, John F.; Hawkins, Samuel D.; Davids, Paul D.; Campione, Salvatore; Pung, Aaron J.; Webster, Preston T.; Weiner, Phillip H.; Finnegan, Patrick S.; Wendt, Joel R.; Wood, Michael G.; Haines, Chris H.; Coon, Wesley T.; Olesberg, Jonathon T.; Shaner, Eric A.; Kadlec, Clark N.; Beechem, Thomas E.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Kim, Jin K.; Peters, D.W.

Abstract not provided.

Compositional dependence of linear and nonlinear optical response in crystalline hafnium zirconium oxide thin films

Journal of Applied Physics

Ihlefeld, Jon F.; Luk, Ting S.; Smith, Sean S.; Fields, Shelby S.; Jaszewski, Samantha T.; Hirt, Daniel M.; Riffe, Will T.; Bender, Scott; Constantin, Costel; Ayyasamy, Mukil V.; Balachandran, Prasanna V.; Lu, Ping L.; Henry, Michael D.; Davids, Paul D.

Composition dependence of second harmonic generation, refractive index, extinction coefficient, and optical bandgap in 20 nm thick crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films is reported. The refractive index exhibits a general increase with increasing ZrO2 content with all values within the range of 1.98-2.14 from 880 nm to 400 nm wavelengths. A composition dependence of the indirect optical bandgap is observed, decreasing from 5.81 eV for HfO2 to 5.17 eV for Hf0.4Zr0.6O2. The bandgap increases for compositions with x > 0.6, reaching 5.31 eV for Hf0.1Zr0.9O2. Second harmonic signals are measured for 880 nm incident light. The magnitude of the second harmonic signal scales with the magnitude of the remanant polarization in the composition series. Film compositions that display near zero remanent polarizations exhibit minimal second harmonic generation while those with maximum remanent polarization also display the largest second harmonic signal. The results are discussed in the context of ferroelectric phase assemblage in the hafnium zirconium oxide films and demonstrate a path toward a silicon-compatible integrated nonlinear optical material.

More Details

Electrical power generation from moderate-temperature radiative thermal sources

Science

Davids, Paul D.; Kirsch, Jared K.; Starbuck, Andrew L.; Jarecki, Robert L.; Shank, Joshua S.; Peters, D.W.

Moderate-temperature thermal sources (100° to 400°C) that radiate waste heat are often the by-product of mechanical work, chemical or nuclear reactions, or information processing. We demonstrate conversion of thermal radiation into electrical power using a bipolar grating-coupled complementary metal-oxide-silicon (CMOS) tunnel diode. A two-step photon-assisted tunneling charge pumping mechanism results in separation of charge carriers in pn-junction wells leading to a large open-circuit voltage developed across a load. Electrical power generation from a broadband blackbody thermal source has been experimentally demonstrated with converted power densities of 27 to 61 microwatts per square centimeter for thermal sources between 250° and 400°C. Scalable, efficient conversion of radiated waste heat into electrical power can be used to reduce energy consumption or to power electronics and sensors.

More Details

Infrared Nanoantenna-Coupled Rectenna for Energy Harvesting

IEEE Aerospace Conference Proceedings

Shank, Joshua S.; Kadlec, E.A.; Peters, D.W.; Davids, Paul D.

Energy harvesting from relatively low-temperature heat sources is important in applications where long-term power sources are needed such as deep space radioisotope thermoelectric generators (RTGs). Current solutions exhibit low efficiency, require exotic materials and structures, and direct contact to the heat source. While the infrared rectenna is currently low efficiency, the path exists for high-efficiency solid state devices. We have made a scalable design using standard CMOS processes, allowing for large-area fabrication. This would allow devices to be made on the wafer scale using existing fabrication technology. The rectenna has the advantage of using radiated power, thus it does not require direct contact to the hot source, but instead must only view the source. This will simplify packaging requirements and make a more robust system. The devices are monolithic and thus robust to adverse operating environments. Here we will discuss the rectenna's physics of operation, particularly light coupling into the structure. Incoming light is coupled to a metal-oxide-semiconductor (MOS) tunnel diode via a broad-area nanoantenna. The nanoantenna consists of a subwavelength metal patterning that concentrates the light into the tunnel diode where the optical signal is rectified. Both the nanoantenna and tunnel diode are distributed devices utilizing the entire area of the surface. The nanoantenna also serves as one contact of the tunnel diode. This direct integration of the nanoantenna and diode overcomes the resistive loss limitations found in prior IR rectenna concepts that resembled microwave rectenna designs scaled down to infrared sizes. We will show simulation and experimental results of fabricated devices. Simulations of the optical fields in the tunnel gap are illustrative of device operation and will be discussed. The measured infrared photocurrent is compared to simulated expectations. Far-field radiation power conversion is demonstrated using standard radiometric techniques and correlated with the rectified current response. We discuss thermal modelling of the localized heat generation within the rectenna structure to demonstrate the lack of a thermoelectric response. Lastly, we discuss future directions of work to improve power conversion efficiency.

More Details

Phase optimization of a silicon photonic two-dimensional electro-optic phased array

Optics InfoBase Conference Papers

Gehl, M.; Hoffman, Galen H.; Davids, Paul D.; Starbuck, Andrew L.; Dallo, Christina M.; Barber, Zeb; Kadlec, Emil; Mohan, R.K.; Crouch, Stephen; Long, Christopher M.

Phase errors in large optical phased arrays degrade beam quality and must be actively corrected. Using a novel, low-power electro-optic design with matched pathlengths, we demonstrate simplified optimization and reduced sensitivity to wavelength and temperature.

More Details

Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

Physical Review Applied

Shank, Joshua S.; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew L.; Howell, Stephen W.; Peters, D.W.; Davids, Paul D.

Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW/cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

More Details

Density matrix approach to photon-assisted tunneling in the transfer Hamiltonian formalism

Physical Review B

Davids, Paul D.; Shank, Joshua S.

The transfer Hamiltonian tunneling current is derived in a time-dependent density matrix formulation and is used to examine photon-assisted tunneling. Bardeen's tunneling expression arises as the result of first-order perturbation theory in a mean-field expansion of the density matrix. Photon-assisted tunneling from confined electromagnetic fields in the forbidden tunnel barrier region occurs due to time-varying polarization and wave-function overlap in the gap which leads to a nonzero tunneling current in asymmetric device structures, even in an unbiased state. The photon energy is seen to act as an effective temperature-dependent bias in a uniform barrier asymmetric tunneling example problem. Higher-order terms in the density matrix expansion give rise to multiphoton enhanced tunneling currents that can be considered an extension of nonlinear optics where the nonlinear conductance plays a similar role as the nonlinear susceptibilities in the continuity equations.

More Details
Results 1–25 of 96
Results 1–25 of 96