Publications

43 Results
Skip to search filters

A time-resolved, in-chamber x-ray pinhole imager for Z

Review of Scientific Instruments

Webb, Timothy J.; Ampleford, David A.; Ball, Christopher R.; Gomez, Matthew R.; Lake, Patrick W.; Maurer, A.; Presura, Radu

We have commissioned a new time-resolved, x-ray imaging diagnostic for the Z facility. The primary intended application is for diagnosing the stagnation behavior of Magnetized Liner Inertial Fusion (MagLIF) and similar targets. We have a variety of imaging systems at Z, both time-integrated and time-resolved, that provide valuable x-ray imaging information, but no system at Z up to this time provides a combined high-resolution imaging with multi-frame time resolution; this new diagnostic, called TRICXI for Time Resolved In-Chamber X-ray Imager, is meant to provide time-resolved spatial imaging with high resolution. The multi-frame camera consists of a microchannel plate camera. A key component to achieving the design goals is to place the instrument inside the Z vacuum chamber within 2 m of the load, which necessitates a considerable amount of x-ray shielding as well as a specially designed, independent vacuum system. A demonstration of the imaging capability for a series of MagLIF shots is presented. Predictions are given for resolution and relative image irradiance to guide experimenters in choosing the desired configuration for their experiments.

More Details

High-resolution imaging of warm x-ray sources with a Wolter optic on the Z Machine

Fein, Jeffrey R.; Ampleford, David A.; Vogel, J.K.V.; Kozioziemski, B.J.; Walton, C.C.W.; Wu, Ming W.; Ayers, J.A.; Ball, Christopher R.; Romaine, S.R.; Bell, Perry M.; Bourdon, Christopher B.; Bradley, Dalton A.; Bruni, R B.; Gard, Paul D.; Highstrete, Clark H.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Pickworth, L.A.P.; Pivovaroff, M.J.; Ramsey, B.R.; Ritter, Brian J.; Seals, Kathryn L.; Sethares, L S.

Abstract not provided.

High-resolution imaging of warm x-ray sources with a Wolter optic on the Z Machine

Fein, Jeffrey R.; Ampleford, David A.; Vogel, J.K.V.; Kozioziemski, B.J.; Walton, C.C.W.; Wu, Ming W.; Ayers, J.A.; Ball, Christopher R.; Romaine, S.R.; Bell, Perry M.; Bourdon, Christopher B.; Bradley, Dave B.; Bruni, R B.; Gard, Paul D.; Highstrete, Clark H.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Pickworth, L.A.P.; Pivovaroff, M.J.; Ramsey, B.R.

Abstract not provided.

A Wolter Imager on the Z Machine to Diagnose Warm X-ray Sources

Fein, Jeffrey R.; Ampleford, David A.; Vogel, Julia K.; Kozioziemski, Bernie J.; Walton, Christopher C.; Wu, Ming W.; Ames, Andrew O.; Ayers, J.A.; Ball, Christopher R.; Bell, Perry M.; Bourdon, Christopher B.; Bradley, David K.; Bruni, R B.; Gard, Paul D.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Pickworth, Louisa A.; Pivovaroff, Michael P.; Ramsey, Brian D.; Roberts, Oliver J.; Romaine, Suzanne R.; Sullivan, Michael A.; Kirtley, Christopher K.

Abstract not provided.

A Wolter Imager on the Z Machine to Diagnose Warm X-ray Sources

Ampleford, David A.; Fein, Jeffrey R.; Vogel, J.K.V.; Kozioziemski, B.J.; Walton, C.C.W.; Wu, Ming W.; Ball, Christopher R.; A. Ames, J.A.; Bell, P.B.; Bourdon, Christopher B.; D. Bradley, R.B.; Dunham, Gregory S.; Gard, Paul D.; Johnson, Drew J.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Nielsen-Weber, Linda B.; Pickworth, L.A.; Pivovaroff, M.J.; Ramsey, B.R.; Roberts, O.J.R.; Sullivan, Michael A.; Rochau, G.A.

Abstract not provided.

Engineering Design for Wolter Imaging Diagnostic on Z

Ball, Christopher R.; Ampleford, David A.; Gard, Paul D.; Maurer, A.; Bourdon, Christopher B.; Fein, Jeffrey R.; Wu, Ming W.; Lake, Patrick W.; Nielsen-Weber, Linda B.; Dunham, Gregory S.; Johnson, Drew J.; Johns, Owen J.; Sullivan, Michael A.; Kirtley, Christopher K.; Kozioziemski, B.J.; Pickworth, L.A.P.; Vogel, J.K.V.; Pivovaroff, M.JP.; Walton, C.C.W.; Ayers, J.A.; Bell, P.B.; Ramsey, B.R.; Romaine, S.R.

Abstract not provided.

Parallel operation of multiple closely spaced small aspect ratio rod pinches

IEEE Transactions on Plasma Science

Harper-Slaboszewicz, V.H.; Leckbee, Joshua L.; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

More Details

Pinned, optically aligned diagnostic dock for use on the Z facility

Review of Scientific Instruments

Gomez, Matthew R.; Rochau, G.A.; Bailey, James E.; Dunham, Gregory S.; Kernaghan, M.D.; Gard, P.; Robertson, Grafton K.; Owen, A.C.; Argo, J.W.; Nielsen, D.S.; Lake, Patrick W.

The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented. © 2012 American Institute of Physics.

More Details

Quantitative extraction of spectral line intensities and widths from x-ray spectra recorded with gated microchannel plate detectors

Review of Scientific Instruments

Dunham, Greg; Bailey, James E.; Rochau, G.A.; Lake, Patrick W.; Nielsen-Weber, L.B.

Plasma spectroscopy requires determination of spectral line intensities and widths. At Sandia National Laboratories Z facility we use elliptical crystal spectrometers equipped with gated microchannel plate detectors to record time and space resolved spectra. We collect a large volume of data typically consisting of five to six snapshots in time and five to ten spectral lines with 30 spatial elements per frame, totaling to more than 900 measurements per experiment. This large volume of data requires efficiency in processing. We have addressed this challenge by using a line fitting routine to automatically fit each spectrum using assumed line profiles and taking into account photoelectron statistics to efficiently extract line intensities and widths with uncertainties. We verified that the random data noise obeys Poisson statistics. Rescale factors for converting film exposure to effective counts required for understanding the photoelectron statistics are presented. An example of the application of these results to the analysis of spectra recorded in Z experiments is presented. © 2007 American Institute of Physics.

More Details

Twin-elliptical-crystal time- and space-resolved soft x-ray spectrometer

Review of Scientific Instruments

Lake, Patrick W.; Bailey, James E.; Rochau, G.A.; Gard, P.; Petmecky, D.; Bump, M.; Joseph, N.R.; Moore, T.C.; Nielsen-Weber, L.B.

Elliptical crystal spectrometers equipped with time-gated microchannel plate (MCP) detectors provide time-, space-, and spectrally resolved data. A common problem is that the number of time resolution elements is limited by the number of MCP frames. The number of frames that fit on a given MCP is limited by the image size and the alignment tolerance. At the Z facility these problems have been addressed with twin-elliptical-crystal spectrometers. Using two crystals and detectors doubles the number of frames available. This enables measurements with ∼350 ps time resolution while still recording data from an ∼4 ns wide time window. Alternatively, the twin crystal design allows simultaneous measurements with different crystals to investigate different spectral regimes. © 2006 American Institute of Physics.

More Details

Time- and space-resolved spectroscopy of dynamic hohlraum interiors

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Bailey, James E.; Chandler, Gordon A.; Rochau, G.A.; Slutz, Stephen A.; Lake, Patrick W.; Lemke, Raymond W.; Mehlhorn, Thomas A.

A dynamic hohlraum is created when an annular z-pinch plasma implodes onto a cylindrical 0.014 g/cc 6-mm-diameter CH{sub 2} foam. The impact launches a radiating shock that propagates toward the axis at {approx}350 {micro}m/ns. The radiation trapped by the tungsten z-pinch plasma forms a {approx}200 eV hohlraum that provides X-rays for indirect drive inertial confinement fusion capsule implosion experiments. We are developing the ability to diagnose the hohlraum interior using emission and absorption spectroscopy of Si atoms added as a tracer to the central portion of the foam. Time- and space-resolved Si spectra are recorded with an elliptical crystal spectrometer viewing the cylindrical hohlraum end-on. A rectangular aperture at the end of the hohlraum restricts the field of view so that the 1D spectrometer resolution corresponds approximately to the hohlraum radial direction. This enables distinguishing between spectra from the unshocked radiation-heated foam and from the shocked foam. Typical spectral lines observed include the Si Ly{alpha} with its He-like satellites and the He-like resonance sequence including He{alpha}, He{beta}, and He{gamma}, along with some of their associated Li-like satellites. Work is in progress to infer the hohlraum conditions using collisional-radiative modeling that accounts for the radiation environment and includes both opacity effects and detailed Stark broadening calculations. These 6-mm-scale radiation-heated plasmas might eventually also prove suitable for testing Stark broadening line profile calculations or for opacity measurements.

More Details

Hot Dense Capsule-Implosion Cores Produced by [Formula presented]-Pinch Dynamic Hohlraum Radiation

Physical Review Letters

Bailey, James E.; Chandler, Gordon A.; Slutz, S.A.; Golovkin, I.; Lake, Patrick W.; Macfarlane, Joseph J.; Mancini, R.C.; Burris-Mog, T.J.; Cooper, G.; Leeper, R.J.; Mehlhorn, T.A.; Moore, T.C.; Nash, Thomas J.; Nielsen, D.S.; Ruiz, Carlos L.; Schroen, D.G.; Varnum, W.A.

Hot dense capsule implosions driven by [Formula presented]-pinch x rays have been measured using a [Formula presented] dynamic hohlraum to implode 1.7–2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to [Formula presented] of x rays. Argon tracer atom spectra were used to measure the [Formula presented] electron temperature and the [Formula presented] electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of [Formula presented], [Formula presented], and symmetry, indicating reasonable understanding of the hohlraum and implosion physics. © 2004 The American Physical Society.

More Details

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, Gregory S.; Fehl, David L.; Franklin, James K.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Leeper, Ramon J.; Joseph, Nathan R.; Knudson, Marcus D.; Lake, Patrick W.; Lazier, Steven E.; Lucas, J.; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond M.; Moore, T.C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry R.; Ruiz, Carlos L.; Sanford, Thomas W.; Seamen, Johann F.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Stygar, William A.; Wenger, D.F.; Seamen, Johann J.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.

Abstract not provided.

Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

Journal of Applied Optics

Cochrane, Kyle C.; Bailey, James E.; Lake, Patrick W.; Carlson, Alan L.

A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

More Details

VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

Physical Review E

Bailey, James E.; Cuneo, M.E.; Lake, Patrick W.; Nash, Thomas J.; Noack, Donald D.; Bailey, James E.

The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

More Details
43 Results
43 Results