Publications

Results 1–50 of 60
Skip to search filters

Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials

Journal of Heat Transfer

Norris, Pamela M.; Smoyer, Justin L.; Duda, John C.; Hopkins, Patrick E.

Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate. © 2012 American Society of Mechanical Engineers.

More Details

Interfacial electron and phonon scattering processes in high-powered nanoscale applications

Hopkins, Patrick E.

The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

More Details

Controlling thermal conductance through quantum dot roughening at interfaces

Physical Review B - Condensed Matter and Materials Physics

Hopkins, Patrick E.; Duda, John C.; Petz, Christopher W.; Floro, Jerrold A.

We examine the fundamental phonon mechanisms affecting the interfacial thermal conductance across a single layer of quantum dots (QDs) on a planar substrate. We synthesize a series of GexSi1-x QDs by heteroepitaxial self-assembly on Si surfaces and modify the growth conditions to provide QD layers with different root-mean-square (rms) roughness levels in order to quantify the effects of roughness on thermal transport. We measure the thermal boundary conductance (hK) with time-domain thermoreflectance. The trends in thermal boundary conductance show that the effect of the QDs on hK are more apparent at elevated temperatures, while at low temperatures, the QD patterning does not drastically affect hK. The functional dependence of hK with rms surface roughness reveals a trend that suggests that both vibrational mismatch and changes in the localized phonon transport near the interface contribute to the reduction in h K. We find that QD structures with rms roughnesses greater than 4 nm decrease hK at Si interfaces by a factor of 1.6. We develop an analytical model for phonon transport at rough interfaces based on a diffusive scattering assumption and phonon attenuation that describes the measured trends in hK. This indicates that the observed reduction in thermal conductivity in SiGe quantum dot superlattices is primarily due to the increased physical roughness at the interfaces, which creates additional phonon resistive processes beyond the interfacial vibrational mismatch. © 2011 American Physical Society.

More Details

Phonon considerations in the reduction of thermal conductivity in phononic crystals

Applied Physics A: Materials Science and Processing

Hopkins, Patrick E.; Phinney, Leslie M.; Rakich, Peter T.; Olsson, Roy H.; El-Kady, I.

Periodic porous structures offer unique material solutions to thermoelectric applications. With recent interest in phonon band gap engineering, these periodic structures can result in reduction of the phonon thermal conductivity due to coherent destruction of phonon modes characteristic in phononic crystals. In this paper, we numerically study phonon transport in periodic porous silicon phononic crystal structures. We develop a model for the thermal conductivity of phononic crystal that accounts for both coherent and incoherent phonon effects, and show that the phonon thermal conductivity is reduced to less than 4% of the bulk value for Si at room temperature. This has substantial impact on thermoelectric applications, where the efficiency of thermoelectric materials is inversely proportional to the thermal conductivity. © 2010 Springer-Verlag.

More Details

Manipulation of thermal phonons: A phononic crystal route to High-ZT thermoelectrics

Proceedings of SPIE - The International Society for Optical Engineering

El-Kady, I.; Su, Mehmet F.; Reinke, Charles M.; Hopkins, Patrick E.; Goettler, Drew; Leseman, Zayd C.; Shaner, Eric A.; Olsson, Roy H.

Phononic crystals (PnCs) are acoustic devices composed of a periodic arrangement of scattering centers embedded in a homogeneous background matrix with a lattice spacing on the order of the acoustic wavelength. When properly designed, a superposition of Bragg and Mie resonant scattering in the crystal results in the opening of a frequency gap over which there can be no propagation of elastic waves in the crystal, regardless of direction. In a fashion reminiscent of photonic lattices, PnC patterning results in a controllable redistribution of the phononic density of states. This property makes PnCs a particularly attractive platform for manipulating phonon propagation. In this communication, we discuss the profound physical implications this has on the creation of novel thermal phenomena, including the alteration of the heat capacity and thermal conductivity of materials, resulting in high-ZT materials and highly-efficient thermoelectric cooling and energy harvesting. © 2011 SPIE.

More Details

Comparison of thermal conductivity and thermal boundary conductance sensitivities in continuous-wave and ultrashort-pulsed thermoreflectance analyses

International Journal of Thermophysics

Hopkins, Patrick E.; Serrano, Justin R.; Phinney, Leslie M.

Thermoreflectance techniques are powerful tools for measuring thermophysical properties of thin film systems, such as thermal conductivity, Λ, of individual layers, or thermal boundary conductance across thin film interfaces (G). Thermoreflectance pump-probe experiments monitor the thermoreflectance change on the surface of a sample, which is related to the thermal properties in the sample of interest. Thermoreflectance setups have been designed with both continuous wave (cw) and pulsed laser systems. In cw systems, the phase of the heating event is monitored, and its response to the heating modulation frequency is related to the thermophysical properties; this technique is commonly termed a phase sensitive thermoreflectance (PSTR) technique. In pulsed laser systems, pump and probe pulses are temporally delayed relative to each other, and the decay in the thermoreflectance signal in response to the heating event is related to the thermophysical properties; this technique is commonly termed a transient thermoreflectance (TTR) technique. In this work, mathematical models are presented to be used with PSTR and TTR techniques to determine the Λ and G of thin films on substrate structures. The sensitivities of the models to various thermal and sample parameters are discussed, and the advantages and disadvantages of each technique are elucidated from the results of the model analyses. © 2010 Springer Science+Business Media, LLC.

More Details

Contribution of optical phonons to thermal boundary conductance

Applied Physics Letters

Beechem, Thomas; Duda, John C.; Hopkins, Patrick E.; Norris, Pamela M.

Thermal boundary conductance (TBC) is a performance determinant for many microsystems due to the numerous interfaces contained within their structure. To assess this transport, theoretical approaches often account for only the acoustic phonons as optical modes are assumed to contribute negligibly due to their low group velocities. To examine this approach, the diffuse mismatch model is reformulated to account for more realistic dispersions containing optical modes. Using this reformulation, it is found that optical phonons contribute to TBC by as much as 80% for a variety of material combinations in the limit of both inelastic and elastic scattering. © 2010 American Institute of Physics.

More Details

Contributions of anharmonic phonon interactions to thermal boundary conductance

Hopkins, Patrick E.

Continued reduction of characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the Diffuse Mismatch Model, which only consdiers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the Maximum Transmission Model and the Higher Harmonic Inelastic model. A new model is derived, the Anharmonic Inelastic Model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new Anharmonic Inelastic Model shows excellent agreement between model predictions and experimental data at the Pb/diamond interface due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb.

More Details

First approximations of phonon thermal transport at solid-graphite interfaces

Hopkins, Patrick E.; Beechem, Thomas E.

This model predicts thermal boundary conductance at interfaces where one material comprising the junction is characterized by high elastic anisotropy (i.e, graphite). The thermal properties of graphite are determined through a simplified vibrational model, where the bulk structure is treated as an linear assembly of two-dimensional systems. This model is validated at temperatures above cryogenic through comparison to experimentally determined values of specific heat. Elastic processes are accounted for through traditional diffuse transport theory. Inelastic contributions due to multi-phonon processes are also addressed and quantified.

More Details

Electron-interface scattering in thin metal films

Hopkins, Patrick E.

Electron-interface scattering during electron-phonon nonequilibrium in thin films creates another pathway for electron system energy loss as characteristic lengths of thin films continue to decrease. As power densities in nanodevices increase, excitations of electrons from sub-conduction-band energy levels will become more probable. These sub-conduction-band electronic excitations significantly affect the material's thermophysical properties. In this work, the effects of d-band electronic excitations are considered in electron energy transfer processes in thin metal films. In thin films with thicknesses less than the electron mean free path, ballistic electron transport leads to electron-interface scattering. The ballistic component of electron transport, leading to electron-interface scattering, is studied by a ballistic-diffusive approximation of the Boltzmann Transport Equation. The effect of d-band excitations on electron-interface energy transfer is analyzed during electron-phonon nonequilibrium after short pulsed laser heating in thin films.

More Details

Simultaneous electronic and lattice characterization using coupled femtosecond spectroscopic techniques

Serrano, Justin R.; Hopkins, Patrick E.

High-power electronics are central in the development of radar, solid-state lighting, and laser systems. Large powers, however, necessitate improved heat dissipation as heightened temperatures deleteriously affect both performance and reliability. Heat dissipation, in turn, is determined by the cascade of energy from the electronic to lattice system. Full characterization of the transport then requires analysis of each. In response, this four-month late start effort has developed a transient thermoreflectance (TTR) capability that probes the thermal response of electronic carriers with 100 fs resolution. Simultaneous characterization of the lattice carriers with this electronic assessment was then investigated by equipping the optical arrangement to acquire a Raman signal from radiation discarded during the TTR experiment. Initial results show only tentative acquisition of a Raman response at these timescales. Using simulations of the response, challenges responsible for these difficulties are then examined and indicate that with outlined refinements simultaneous acquisition of TTR/Raman signals remains attainable in the near term.

More Details
Results 1–50 of 60
Results 1–50 of 60