Publications

67 Results
Skip to search filters

GaAs Neutron Response Functions and Radiation Damage Metrics

Griffin, Patrick J.; Asper, Nicholas A.; Charlton, William C.

The radiation effects community needs clear, well-documented, neutron energy-dependent responses that can be used in assessing radiation-induced material damage to GaAs semiconductors and for correlating observed radiation-induced changes in the GaAs electronic properties with computed damage metrics. In support of the objective, this document provides: a) a clearly defined set of relevant neutron response functions for use in dosimetry applications; b) clear mathematical expressions for the defined response functions; and c) updated quantitative values for the energy- dependent response functions that reflect the best current nuclear data and modelling. This document recaps the legacy response functions. It then surveys the latest nuclear data and updates the recommended response function to support current GaAs damage studies. A detailed tabulation for six of the energy-dependent response functions is provided in an Appendix.

More Details

DFF Layout Variations in CMOS SOI -Analysis of Hardening by Design Options

IEEE Transactions on Nuclear Science

Black, Jeffrey B.; Black, Dolores A.; Domme, Nicholas A.; Dodd, Paul E.; Griffin, Patrick J.; Nowlin, R.N.; Trippe, James M.; Salas, Joseph G.; Reed, Robert A.; Weller, Robert A.; Tonigan, Andrew M.; Schrimpf, Ronald D.

Four D flip-flop (DFF) layouts were created from the same schematic in Sandia National Laboratories' CMOS7 silicon-on-insulator (SOI) process. Single-event upset (SEU) modeling and testing showed an improved response with the use of shallow (not fully bottomed) N-type metal-oxide-semiconductor field-effect transistors (NMOSFETs), extending the size of the drain implant and increasing the critical charge of the transmission gates in the circuit design and layout. This research also shows the importance of correctly modeling nodal capacitance, which is a major factor determining SEU critical charge. Accurate SEU models enable the understanding of the SEU vulnerabilities and how to make the design more robust.

More Details

Uncertainty Characterization of Silicon Damage Metrics

IEEE Transactions on Nuclear Science

Griffin, Patrick J.

A general formulation of silicon damage metrics and associated energy-dependent response functions relevant to the radiation effects community is provided. Using this formulation, a rigorous quantitative treatment of the energy-dependent uncertainty contributors is performed. This resulted in the generation of a covariance matrix for the displacement kerma, the Norgett-Robinson-Torrens-based damage energy, and the 1-MeV(Si)-equivalent damage function. When a careful methodology is used to apply a reference 1-MeV damage value, the systematic uncertainty in the fast fission region is seen to be removed, and the uncertainty for integral metrics in broad-based fission-based neutron fields is demonstrated to be significantly reduced.

More Details

Correlation of a Bipolar-Transistor-Based Neutron Displacement Damage Sensor Methodology with Proton Irradiations

IEEE Transactions on Nuclear Science

Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; Griffin, Patrick J.; Fleetwood, Daniel M.; Schrimpf, Ronald D.

A bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This paper significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV X-ray and/or cobalt-60 gamma ray irradiations. Nonionizing energy loss calculations adequately approximate the correlations between particle and device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.

More Details

Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics

EPJ Web of Conferences

Griffin, Patrick J.; Rochman, Dimitri; Koning, Arjan

A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

More Details

Influence of the Damage Partition Function on the Uncertainty of the Silicon Displacement Damage Metric

IEEE Transactions on Nuclear Science

Griffin, Patrick J.; Cooper, Philip J.

The effect of uncertainty in the energy partition function on the silicon displacement damage metric is presented. Through the use of a Total Monte Carlo approach, the effect of uncertainty in the underlying electronic and nuclear ion interaction potentials, which are used to define the damage partition function, is propagated into an uncertainty in the silicon damage metric. This uncertainty is expressed as an energy-dependent covariance matrix which permits this uncertainty component to be combined with other uncertainty components, e.g. uncertainty due to the knowledge of the nuclear interaction data or to the treatment of the damage in the threshold displacement region. This approach provides a rigorous treatment of uncertainty due to the damage metric which can then be propagated in uncertainty estimates for various applications, e.g. when examining damage equivalence between different neutron sources. A strong energy-dependent correlation is found in this uncertainty component.

More Details

Detailed Description of the Derivation of the Silicon Damage Response Function

Griffin, Patrick J.

T his report provides a set of consistent definitions for radiation damage metrics relevant to the modeling of displacement damage in materials. The limitations/approximations built into the various metrics are discussed, as are the intended applications that gave rise to community use of the damage metrics. Numerical tabulations are provided, based on the latest nuclear data, for recommended values of the neutron displacement kerma factor and various NRT- based damage energy metrics in silicon.

More Details

Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

EPJ Web of Conferences

Griffin, Patrick J.

The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

More Details

Advanced UQ approaches to the validation of the IRDFF library

Physics of Reactors 2016, PHYSOR 2016: Unifying Theory and Experiments in the 21st Century

Griffin, Patrick J.; Parma, Edward J.; Vehar, David W.

The IRDFF cross section library provides the highest fidelity cross section characterization and is the recommended data library to be used for dosimetry in support of reactor pressure vessel surveillance programs. In order to support this critical application, quantified validation evidence is required for the cross section library. Results are reported here on the use of various advanced approaches to uncertainty quantification using metrics relevant to spectrum characterization applications. The use of a quantified least squares approach, combining a consistent treatment of uncertainty from the spectral characterizations, the dosimetry cross sections, and measured activation products, is identified as one of the most sensitive metrics by which to report validation evidence. Using this metric the status of the validation of the IRDFF library was investigated. This analysis began with a consideration of the best characterized 252Cf spontaneous fission standard neutron benchmark field. Good validation evidence is found for 39 of the 79 IRDFF reactions. The 235U thermal fission reference neutron field was then investigated, and found to yield good validation evidence for an additional 10 of the IRDFF reactions. Extending the analysis further to include four different reactor-based reference neutron benchmark fields, ranging from fast burst reactors to well-moderated pool-type reactors, yielded good validation evidence for an additional 6 IRDFF reactions. In total, evidence is reported here for 55 of the 79 reactions in the IRDFF library.

More Details

Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl)

Vega, Richard M.; Parma, Edward J.; Naranjo, Gerald E.; Lippert, Lance L.; Vehar, David W.; Griffin, Patrick J.

This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma - ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

More Details

Neutron Reference Benchmark Field Specifications: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Environment (ACRR-PLG-CC-32-CL)

Vega, Richard M.; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integral dosimetry measurements in the neutron field are reported.

More Details

Neutron Reference Benchmark Field Specification: ACRR 44 Inch Lead-Boron (LB44) Bucket Environment (ACRR-LB44-CC-32-CL)

Vega, Richard M.; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the 44 inch Lead-Boron (LB44) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

More Details

Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL)

Vega, Richard M.; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

More Details

Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl)

Parma, Edward J.; Vehar, David W.; Lippert, Lance L.; Griffin, Patrick J.; Naranjo, Gerald E.; Luker, Spencer M.

This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

More Details

Covariance propagation in spectral indices

Nuclear Data Sheets

Griffin, Patrick J.

In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, and provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.

More Details

Radiation characterization summary :

Parma, Edward J.; Lippert, Lance L.; Griffin, Patrick J.; Naranjo, Gerald E.; Luker, Spencer M.

This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the 44-inch-long lead-boron bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-LB44-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra are presented as well as radial and axial neutron and gamma-ray flux profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse and steady-state operations are presented with conversion examples.

More Details

EPR/PTFE dosimetry for test reactor environments

Journal of ASTM International

Vehar, David W.; Griffin, Patrick J.; Quirk, Thomas J.

In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. Copyright © 2012 by ASTM International.

More Details

Path forward for dosimetry cross sections

ASTM Special Technical Publication

Griffin, Patrick J.; Peters, C.D.

In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of "due consideration" of experimental data in the evaluation. Copyright © 2012 by ASTM International.

More Details

Ground water and snow sensor based on directional detection of cosmogenic neutrons

Griffin, Patrick J.; Marleau, Peter M.

A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

More Details

Development of a silicon calorimeter for dosimetry applications in a water-moderated reactor

ASTM Special Technical Publication

Luker, Spencer M.; Griffin, Patrick J.; Depriest, Kendall D.; King, Donald B.; Naranjo, Gerald E.; Suo-Anttila, Ahti J.; Kellner, Ned

High fidelity active dosimetry in the mixed neutron/gamma field of a research reactor is a very complex issue. For passive dosimetry applications, the use of activation foils addresses the neutron environment while the use of low neutron response CaF2:Mn thermoluminescent dosimeters (TLDs) addresses the gamma environment. While radiation-hardened diamond photoconducting detectors (PCD) have been developed that provide a very precise fast response (picosecond) dosimeter and can provide a time-dependent profile for the radiation environment, the mixed field response of the PCD is still uncertain and this interferes with the calibration of the PCD response. In order to address the research reactor experimenter's need for a dosimeter that reports silicon dose and dose rate at a test location during a pulsed reactor operation, a silicon calorimeter has been developed. This dosimeter can be used by itself to provide a dose in rad(Si) up to a point in a reactor pulsed operation, or, in conjunction with the diamond PCD, to provide a dose rate. This paper reports on the development, testing, and validation of this silicon calorimeter for applications in water-moderated research reactors. Copyright © 2006 by ASTM International.

More Details

Criteria for the selection of dosimetry cross sections

Griffin, Patrick J.; Griffin, Patrick J.

This paper defines a process for selecting dosimetry-quality cross sections. The recommended cross-section evaluation depends on screening high-quality evaluations with quantified uncertainties, down-selecting based on comparison to experiments in standard neutron fields, and consistency checking in reference neutron fields. This procedure is illustrated for the {sup 23}Na(n,{gamma}){sup 24}Na reaction.

More Details

Neutron contribution to CaF2:Mn thermoluminescent dosimeter response in mixed (n/y) field environments

Proposed for publication in IEEE Transactions on Nuclear Science.

Depriest, Kendall D.; Depriest, Kendall D.; Griffin, Patrick J.

Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by postexperiment analysis because the TLD reading system cannot distinguish between photon- and neutron-produced response. Using a model of an aluminum-equilibrated TLD-400 (CaF{sub 2}:Mn) chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determine the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

More Details
67 Results
67 Results