This project developed prototype germanium telluride switches, which can be used in RF applications to improve SWAP (size, weight, and power) and signal quality in RF systems. These switches can allow for highly reconfigurable systems, including antennas, communications, optical systems, phased arrays, and synthetic aperture radar, which all have high impact on current National Security goals for improved communication systems and communication technology supremacy. The final result of the project was the demonstration of germanium telluride RF switches, which could act as critical elements necessary for a single chip RF communication system that will demonstrate low SWAP and high reconfigurability
This report details results of a one-year LDRD to understand the dynamics, figures of merit, and fabrication possibilities for levitating a micro-scale, disk-shaped dielectric in an optical field. Important metrics are the stability, positional uncertainty, and required optical power to maintain levitation. Much of the results are contained in a publication written by our academic alliance collaborators. Initial structures were grown at Sandia labs and a test fabrication flow was executed. Owing to our strength in VCSEL lasers, we were particularly interested in calculations and fabrication flows that could be compatible with a VCSEL light source.
State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. We have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be applied to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.