Publications

59 Results
Skip to search filters

Isotopic fractionation as in-situ sensor of subsurface reactive flow and precursor for rock failure

Ilgen, Anastasia G.; Choens, Robert C.; Knight, Andrew W.; Harvey, Jacob A.; Martinez, Mario J.; Yoon, Hongkyu Y.; Wilson, Jennifer E.; Mills, Melissa M.; Wang, Qiaoyi W.; Gruenwald, Michael G.; Newell, Pania N.; Schuler, Louis S.; Davis, Haley J.

Greater utilization of subsurface reservoirs perturbs in-situ chemical-mechanical conditions with wide ranging consequences from decreased performance to project failure. Understanding the chemical precursors to rock deformation is critical to reducing the risks of these activities. To address this need, we investigated the coupled flow-dissolution- precipitation-adsorption reactions involving calcite and environmentally-relevant solid phases. Experimentally, we quantified (1) stable isotope fractionation processes for strontium during calcite nucleation and growth, and during reactive fluid flow; (2) consolidation behavior of calcite assemblages in the common brines. Numerically, we quantified water weakening of calcite using molecular dynamics simulations; and quantified the impact of calcite dissolution rate on macroscopic fracturing using finite element models. With microfluidic experiments and modeling, we show the effect of local flow fields on the dissolution kinetics of calcite. Taken together across a wide range of scales and methods, our studies allow us to separate the effects of reaction, flow, and transport, on calcite fracturing and the evolution of strontium isotopic signatures in the reactive fluids.

More Details

Numerical assessment of fault impact on caprock seals during CO2 sequestration

International Journal of Greenhouse Gas Control

Newell, Pania N.; Martinez, Mario J.

Coupled fluid-flow and geomechanical analysis of caprock integrity has gained a lot of attention among scientists and researchers investigating the long-term performance of geologic carbon storage systems. Reactivation of pre-existing fractures within the caprock or re-opening of faults can create permeable pathways which can influence the seal integrity. Stability of the caprock during and after injection of super-critical CO2, and the impact of pre-existing fractures in the presence or absence of one or multiple faults have been investigated in this study. The impact of the wellbore orientation and the injection rate are among other key factors in understanding the structural trapping mechanisms within such geological formations. In this study, we numerically investigated the impact of each of these factors. This study revealed the interplay between joints and faults and how different leakage pathways are formed and under which scenario they play a dominant role in terms of CO2 leakage. This study also highlights the role of one versus multiple faults in the domain and the importance of the fault hydrological property in forming leakage pathway.

More Details

Coupled hydro-mechanical modeling of injection-induced seismicity in the multiphase flow system

53rd U.S. Rock Mechanics/Geomechanics Symposium

Chang, Kyung W.; Yoon, Hongkyu Y.; Martinez, Mario J.; Newell, Pania N.

The fluid injection into the subsurface perturbs the states of pore pressure and stress on the pre-existing faults, potentially causing earthquakes. In the multiphase flow system, the contrast of fluid and rock properties between different structures produces the changes in pressure gradients and subsequently stress fields. Assuming two-phase fluid flow (gas-water system) and poroelasticity, we simulate the three-layered formation including a basement fault, in which injection-induced pressure encounters the fault directly given injection scenarios. The single-phase poroelasticity model with the same setting is also conducted to evaluate the multiphase flow effects on poroelastic response of the fault to gas injection. Sensitivity tests are performed by varying the fault permeability. The presence of gaseous phase reduces the pressure buildup within the highly gas-saturated region, causing less Coulomb stress changes, whereas capillarity increases the pore pressure within the gas-water mixed region. Even though the gaseous plume does not approach the fault, the poroelastic stressing can affect the fault stability, potentially the earthquake occurrence.

More Details

Coupled multiphase flow and geomechanical modeling of injection-induced seismicity on the basement fault

52nd U.S. Rock Mechanics/Geomechanics Symposium

Chang, Kyung W.; Yoon, Hongkyu Y.; Martinez, Mario J.; Newell, Pania N.

The fluid injection into deep geological formations altar the states of pore pressure and stress on the faults, potentially causing earthquakes. In the multiphase flow system, the interaction between fluid flow and mechanical deformation in porous media is critical to determine the spatio-temporal distribution of pore pressure and stress. The contrast of fluid and rock properties between different structures produces the changes in pressure gradients and subsequently stress fields. Assuming two-phase fluid flow (gas-water system), we simulate the two-dimensional reservoir including a basement fault, in which injection-induced pressure encounters the fault directly given injection scenarios. The single-phase flow model with the same setting is also conducted to evaluate the multiphase flow effects on mechanical response of the fault to gas injection. A series of sensitivity tests are performed by varying the fault permeability. The presence of gaseous phase reduces the pressure buildup within the gas-saturated region, causing less Coulomb stress change. The low-permeability fault prevent diffusion initially as observed in the single-phase flow system. Once gaseous phase approaches, the fault acts as a capillary barrier that causes increases in pressure within the fault zone, potentially inducing earthquakes even without direct diffusion.

More Details

Impact of Elastic Moduli in Tension and Compression in Geomaterials

McCarty, Sean M.; Newell, Pania N.

Predicting the long-term integrity of caprock is essential for determining the viability of carbon sequestration. Accurate prediction requires incorporating knowledge about small- scale, subcritical fracture and how they contribute to developing micro and macro-cracks. Tests such as short rod, notched three-point bending (N3PB), cylinder splitting, double torsion, etc. are used to determine the physical characteristics of material. Unlike other materials such as metals, geomaterials have different moduli in tension than compression. This study compares the effects of separate tension and compression moduli on simulations in Abaqus for the N3PB test. Previous models of N3PB created by Rhinehart et al. [8] and Borowski [6] have struggled to create results that accurately portrayed experimental results. Borowski [6] found that previous models with only one value for Young's modulus improved when two moduli were used though it was difficult to determine regions of tension and compression prior to simula- tion. This study develops an Abaqus subroutine written in Fortran to dynamically reassign material properties as the simulation progresses and produces simulation results capable of much better replication of experimental data. However, the accuracy of the model heavily depends on accurate determination of the Young's modulus in tension.

More Details

Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage

Journal of Petroleum Science and Engineering

Newell, Pania N.; Martinez, Mario J.; Eichhubl, P.

Economic feasibility of geologic carbon storage demands sustaining large storage rates without damaging caprock seals. Reactivation of pre-existing or newly formed fractures may provide a leakage pathway across caprock layers. In this study, we apply an equivalent continuum approach within a finite element framework to model the fluid-pressure-induced reactivation of pre-existing fractures within the caprock, during high-rate injection of super-critical CO2 into a brine-saturated reservoir in a hypothetical system, using realistic geomechanical and fluid properties. We investigate the impact of reservoir to caprock layer thickness, wellbore orientation, and injection rate on overall performance of the system with respect to caprock failure and leakage. We find that vertical wells result in locally higher reservoir pressures relative to horizontal injection wells for the same injection rate, with high pressure inducing caprock leakage along reactivated opening-mode fractures in the caprock. After prolonged injection, leakage along reactivated fractures in the caprock is always higher for vertical than horizontal injection wells. Furthermore, we find that low ratios of reservoir to caprock thickness favor high excess pressure and thus fracture reactivation in the caprock. Injection into thick reservoir units thus lowers the risk associated with CO2 leakage.

More Details

Investigation of the influence of geomechanical and hydrogeological properties on surface uplift at In Salah [Systematic investigation of the influence of geomechanical and hydrogeological properties on surface uplift at In Salah]

Journal of Petroleum Science and Engineering

Newell, Pania N.; Yoon, Hongkyu Y.; Martinez, Mario J.; Bishop, Joseph E.; Bryant, Steven B.

Coupled reservoir and geomechanical simulations are significantly important to understand the long-term behavior of geologic carbon storage (GCS) systems. In this study, we performed coupled fluid flow and geomechanical modeling of CO2 storage using available field data to (1) validate our existing numerical model and (2) perform parameter estimation via inverse modeling to identify the impact of key geomechanical (Young's modulus and Biot's coefficient) and hydrogeological (permeability and anisotropy ratio) properties on surface uplift and the pore pressure buildup at In Salah in Algeria. Furthermore, two sets of surface uplift data featuring low and high uplifts above two injection wells and the maximum change in the pore pressure due to CO2 injection were used to constrain the inverse model.

More Details

Strategic Petroleum Reserve Cemented Annulus Modeling and Testing; FY16 Progress

Nemer, Martin N.; Kuhlman, Kristopher L.; Newell, Pania N.; Bettin, Giorgia B.

Sandia National Laboratories has begun developing modeling and analysis tools of flow through the cemented port ion of a cemented annulus in a Strategic Petroleum Reserve (SPR) well since August of 201 5 . The goal of this work is to develop model s and testing procedures to diagnose the health of cemented annuli at SPR sites. In Fiscal Year 2016 (FY16), we have developed several tests and associated models that we believe are sufficient for this purpose. This report outlines progress made in FY16 and future work.

More Details

Simulating fragmentation and fluid-induced fracture in disordered media using random finite-element meshes

International Journal for Multiscale Computational Engineering

Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania N.

Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. Here, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipated during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.

More Details

Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling

Broome, Scott T.; Flint, Gregory M.; Dewers, Thomas D.; Newell, Pania N.

This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.

More Details

Cohesive Zone Modeling in Geomaterial

Provost, Rachel E.; Newell, Pania N.; Matteo, Edward N.

The purpose of the two projects discussed in this report is to use the cohesive zone method to evaluate fracture properties of geomaterials. Two experimental tests, the push-out test and the notched three-point bend test, were modeled computationally using finite element analysis and cohesive zone modeling to extract load and displacement information and ul- timately determine failure behavior. These results are to be compared with experimental tests when they are available. The first project used the push-out test to investigate the shear bond strength at the cement- shale interface. The second project explored the effects of scaling a notched three-point bend- ing specimen to study fracture toughness characteristics. The bond strength and fracture toughness of a material and its interfaces are important parameters to consider in subsurface applications so that zonal isolation can be achieved.

More Details

Geomechanical modeling to predict wellbore stresses and strains for the design of wellbore seal repair materials for use at a CO2 injection site

49th US Rock Mechanics / Geomechanics Symposium 2015

Sobolik, Steven R.; Gomez, Steven P.; Matteo, Edward N.; Dewers, Thomas D.; Newell, Pania N.; Stormont, J.C.; Reda Taha, M.M.

This paper presents results of three models simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore system (cement and casing) and seal repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations that can compromise seal integrity. Three distinct computational models comprise the current modeling effort. The first model depicts bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. This model will be used to gain an understanding of the wellbore microannulus compressibility and permeability. The second is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation to develop stress-strain histories for wellbore locations from 100 to 400 meters from an injection well. The results from these models are used as input to a more detailed model of a wellbore system. The 3D wellbore model examines the impacts of various loading scenarios on a wellbore system. The results from these models will be used to estimate the necessary thermal-mechanical properties needed for a successful repair material.

More Details

Computational thermal, chemical, fluid, and solid mechanics for geosystems management

Martinez, Mario J.; Red-Horse, John R.; Carnes, Brian C.; Mesh, Mikhail M.; Field, Richard V.; Davison, Scott M.; Yoon, Hongkyu Y.; Bishop, Joseph E.; Newell, Pania N.; Notz, Patrick N.; Turner, Daniel Z.; Subia, Samuel R.; Hopkins, Polly L.; Moffat, Harry K.; Jove Colon, Carlos F.; Dewers, Thomas D.; Klise, Katherine A.

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

More Details
59 Results
59 Results