Publications

11 Results
Skip to search filters

Topological photonic structures for nanophotonics

International Conference on Transparent Optical Networks

Subramania, Ganapathi S.; Anderson, P.D.

Topological photonic structures in analogy to their electronic counterparts can provide new functionalities in nanophotonics. In particular, they can possess topologically protected photonic modes that can propagate unidirectionally without scattering and can have an extreme photonic density of states (PDOS). These unique properties can directly impact many photonic systems in optical communications and in quantum information processing applications such as single photon transport. In analogy to spin Hall effect in electronics, photonic systems can exhibit helicity or pseudo-spin dependent light transport. Below we describe such a system in a honeycomb two-dimensional hole-array photonic crystal. Enabling such properties at optical frequencies and on chip-scale will be very important for practical applications of such phenomena.

More Details

Deterministically placed quantum dots for quantum nanophotonics

International Conference on Transparent Optical Networks

Subramania, Ganapathi S.; Fischer, Arthur J.; Anderson, P.D.; Koleske, Daniel K.

The ability to achieve deterministic placement of semiconductor quantum dots (QDs) opens up interesting possibilities for nanophotonic devices. By incorporating these QDs within microcavities, light-matter interaction can be tailored and enhanced, enabling phenomenon such as spontaneous emission enhancement, low threshold lasing, single photon emission and strong-coupling. The quality of these phenomena relies on the distribution of emission wavelengths of the emitter dipoles and the strength of their coupling to internal fields of the cavity. Therefore size-controlled fabrication of QDs and their deterministic placement become quite important. In this work we will describe a photoelectrochemical-based etching of III-nitride materials to achieve QDs with uniform emission wavelength. By patterning using electron beam lithography to create a nanopost structure in an epitaxially grown III-nitride based quantum well structure, we will show potential for deterministic placement. The photoluminescence response from the nanopost structure after photoelectrochemical etching reveals sharp lines indicative of quantum dot formation.

More Details
11 Results
11 Results