Publications

55 Results
Skip to search filters

Facile rearrangement of 3-oxoalkyl radicals is evident in low-temperature gas-phase oxidation of ketones

Journal of the American Chemical Society

Scheer, Adam M.; Welz, Oliver W.; Sasaki, Darryl Y.; Osborn, David L.; Taatjes, Craig A.

The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550-650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that in a Dowd-Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol-1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation. © 2013 American Chemical Society.

More Details

Note: Absolute photoionization cross-section of the vinyl radical

Journal of Chemical Physics

Savee, John D.; Lockyear, Jessica F.; Borkar, Sampada; Eskola, Arkke J.; Welz, Oliver W.; Taatjes, Craig A.; Osborn, David L.

This work measures the absolute photoionization cross-section of the vinyl radical (σvinyl(E)) between 8.1 and 11.0 eV. Two different methods were used to obtain absolute cross-section measurements: 193 nm photodissociation of methyl vinyl ketone (MVK) and 248 nm photodissociation of vinyl iodide (VI). The values of the photoionization cross-section for the vinyl radical using MVK, σvinyl(10.224 eV) = (6.1 ± 1.4) Mb and σvinyl(10.424 eV) = (8.3 ± 1.9) Mb, and using VI, σvinyl(10.013 eV) = (4.7 ± 1.1) Mb, σ vinyl(10.513 eV) = (9.0 ± 2.1) Mb, and σ vinyl(10.813 eV) = (12.1 ± 2.9) Mb, define a photoionization cross-section that is ∼1.7 times smaller than a previous determination of this value. © 2013 AIP Publishing LLC.

More Details

Directly measuring reaction kinetics of QOOH-a crucial but elusive intermediate in hydrocarbon autoignition

Physical Chemistry Chemical Physics

Zador, Judit Z.; Huang, Haifeng H.; Welz, Oliver W.; Zetterberg, Johan; Osborn, David L.; Taatjes, Craig A.

Hydrocarbon autoignition has long been an area of intense fundamental chemical interest, and is a key technological process for emerging clean and efficient combustion strategies. Carbon-centered radicals containing an -OOH group, commonly denoted QOOH radicals, are produced by isomerization of the alkylperoxy radicals that are formed in the first stages of oxidation. These QOOH radicals are among the most critical species for modeling autoignition, as their reactions with O2 are responsible for chain branching below 1000 K. Despite their importance, no QOOH radicals have ever been observed by any means, and only computational and indirect experimental evidence has been available on their reactivity. Here, we directly produce a QOOH radical, 2-hydroperoxy-2-methylprop-1-yl, and experimentally determine rate coefficients for its unimolecular decomposition and its association reaction with O 2. The results are supported by high-level theoretical kinetics calculations. Our experimental strategy opens up a new avenue to study the chemistry of QOOH radicals in isolation. © 2013 the Owner Societies.

More Details

Unconventional peroxy chemistry in alcohol oxidation: The water elimination pathway

Journal of Physical Chemistry Letters

Welz, Oliver W.; Klippenstein, Stephen J.; Harding, Lawrence B.; Taatjes, Craig A.; Zador, Judit Z.

Predictive simulation for designing efficient engines requires detailed modeling of combustion chemistry, for which the possibility of unknown pathways is a continual concern. Here, we characterize a low-lying water elimination pathway from key hydroperoxyalkyl (QOOH) radicals derived from alcohols. The corresponding saddle-point structure involves the interaction of radical and zwitterionic electronic states. This interaction presents extreme difficulties for electronic structure characterizations, but we demonstrate that these properties of this saddle point can be well captured by M06-2X and CCSD(T) methods. Experimental evidence for the existence and relevance of this pathway is shown in recently reported data on the low-temperature oxidation of isopentanol and isobutanol. In these systems, water elimination is a major pathway, and is likely ubiquitous in low-temperature alcohol oxidation. These findings will substantially alter current alcohol oxidation mechanisms. Moreover, the methods described will be useful for the more general phenomenon of interacting radical and zwitterionic states. © 2013 American Chemical Society.

More Details

Low-temperature combustion chemistry of biofuels: Pathways in the low-temperature (550-700 K) oxidation chemistry of isobutanol and tert-butanol

Proceedings of the Combustion Institute

Welz, Oliver W.; Savee, John D.; Eskola, Arkke J.; Sheps, Leonid S.; Osborn, David L.; Taatjes, Craig A.

Butanol isomers are promising next-generation biofuels. Their use in internal combustion applications, especially those relying on low-temperature autoignition, requires an understanding of their low-temperature combustion chemistry. Whereas the high-temperature oxidation chemistry of all four butanol isomers has been the subject of substantial experimental and theoretical efforts, their low-temperature oxidation chemistry remains underexplored. In this work we report an experimental study on the fundamental low-temperature oxidation chemistry of two butanol isomers, tert-butanol and isobutanol, in low-pressure (4-5.1 Torr) experiments at 550 and 700 K. We use pulsed-photolytic chlorine atom initiation to generate hydroxyalkyl radicals derived from tert-butanol and isobutanol, and probe the chemistry of these radicals in the presence of an excess of O2 by multiplexed time-resolved tunable synchrotron photoionization mass spectrometry. Isomer-resolved yields of stable products are determined, providing insight into the chemistry of the different hydroxyalkyl radicals. In isobutanol oxidation, we find that the reaction of the a-hydroxyalkyl radical with O2 is predominantly linked to chain-terminating formation of HO2. The Waddington mechanism, associated with chain-propagating formation of OH, is the main product channel in the reactions of O2 with b-hydroxyalkyl radicals derived from both tert-butanol and isobutanol. In the tert-butanol case, direct HO2 elimination is not possible in the b-hydroxyalkyl + O2 reaction because of the absence of a beta C-H bond; this channel is available in the b-hydroxyalkyl + O2 reaction for isobutanol, but we find that it is strongly suppressed. Observed evolution of the main products from 550 to 700 K can be qualitatively explained by an increasing role of hydroxyalkyl radical decomposition at 700 K. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

New mechanistic insights to the O(3P) + propene reaction from multiplexed photoionization mass spectrometry

Physical Chemistry Chemical Physics

Savee, John D.; Welz, Oliver W.; Taatjes, Craig A.; Osborn, David L.

The reaction of O(3P) with propene (C3H6) has been examined using tunable vacuum ultraviolet radiation and time-resolved multiplexed photoionization mass spectrometry at 4 Torr and 298 K. The temporal and isomeric resolution of these experiments allow the separation of primary from secondary reaction products and determination of branching ratios of 1.00, 0.91 ± 0.30, and 0.05 ± 0.04 for the primary product channels CH3 + CH2CHO, C2H5 + HCO, and H2 + CH3CHCO, respectively. The H + CH3CHCHO product channel was not observable for technical reasons in these experiments, so literature values for the branching fraction of this channel were used to convert the measured product branching ratios to branching fractions. The results of the present study, in combination with past experimental and theoretical studies of O(3P) + C3H6, identify important pathways leading to products on the C3H6O potential energy surface (PES). The present results suggest that up to 40% of the total product yield may require intersystem crossing from the initial triplet C3H6O PES to the lower-lying singlet PES. © the Owner Societies.

More Details

Synchrotron photoionization measurements of OH-initiated cyclohexene oxidation: Ring-preserving products in OH + cyclohexene and hydroxycyclohexyl + O 2 reactions

Journal of Physical Chemistry A

Ray, Amelia W.; Taatjes, Craig A.; Welz, Oliver W.; Osborn, David L.; Meloni, Giovanni

Earlier synchrotron photoionization mass spectrometry experiments suggested a prominent ring-opening channel in the OH-initiated oxidation of cyclohexene, based on comparison of product photoionization spectra with calculated spectra of possible isomers. The present work re-examines the OH + cyclohexene reaction, measuring the isomeric products of OH-initiated oxidation of partially and fully deuterated cyclohexene. In particular, the directly measured photoionization spectrum of 2-cyclohexen-1-ol differs substantially from the previously calculated Franck-Condon envelope, and the product spectrum can be fit with no contribution from ring-opening. Measurements of H 2O 2 photolysis in the presence of C 6D 10 establish that the addition-elimination product incorporates the hydrogen atom from the hydroxyl radical reactant and loses a hydrogen (a D atom in this case) from the ring. Investigation of OH + cyclohexene-4,4,5,5-d 4 confirms this result and allows mass discrimination of different abstraction pathways. Products of 2-hydroxycyclohexyl-d 10 reaction with O 2 are observed upon adding a large excess of O 2 to the OH + C 6D 10 system. © 2012 American Chemical Society.

More Details

Absolute photoionization cross-section of the propargyl radical

Journal of Chemical Physics

Savee, John D.; Soorkia, Satchin; Welz, Oliver W.; Selby, Talitha M.; Taatjes, Craig A.; Osborn, David L.

Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C 3H 3) radical, σ propargyl ion (E), relative to the known absolute cross-section of the methyl (CH 3) radical. We generated a stoichiometric 1:1 ratio of C 3H 3 : CH 3 from 193 nm photolysis of two different C 4H 6 isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of σ propargyl ion (10.213 eV)=(26.1±4.2) Mb and σ propargyl ion (10.413 eV)=(23.4±3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of σ propargyl ion (10.213 eV)=(23.6±3.6) Mb and σ propargyl ion (10.413 eV)=(25.1±3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations. © 2012 American Institute of Physics.

More Details

Low-temperature combustion chemistry of biofuels: Pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol

Physical Chemistry Chemical Physics

Welz, Oliver W.; Zador, Judit Z.; Savee, John D.; Ng, Martin Y.; Meloni, Giovanni; Fernandes, Ravi X.; Sheps, Leonid S.; Simmons, Blake S.; Lee, Taek S.; Osborn, David L.; Taatjes, Craig A.

The branched C 5 alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO 2 production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH via β-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO 2) radicals. In these pathways, internal hydrogen abstraction in the RO 2 QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO 2 chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature. © 2012 The Owner Societies.

More Details

Competing channels in the propene+OH reaction: Experiment and validated modeling over a broad temperature and pressure range

Zeitschrift fur Physikalische Chemie

Kappler, Claudia; Zador, Judit Z.; Welz, Oliver W.; Fernandes, Ravi X.; Olzmann, Matthias; Taatjes, Craig A.

Although the propene+OH reaction has been in the center of interest of numerous experimental and theoretical studies, rate coefficients have never been determined experimentally between ∼600 and ∼ 750 K, where the reaction is governed by the complex interaction of addition, back-dissociation and abstraction. In this work OH time-profiles are measured in two independent laboratories over a wide temperature region (200-950 K) and are analyzed incorporating recent theoretical results. The datasets are consistent both with each other and with the calculated rate coefficients. We present a simplified set of reactions validated over a broad temperature and pressure range, that can be used in smaller combustion models for propene+OH. In addition, the experimentally observed kinetic isotope effect for the abstraction is rationalized using ab initio calculations and variational transition-state theory. We recommend the following approximate description of the OH+C 3H6 reaction: C3H6+OH⇄C 3H6OH (R1a,R-1a) C3H6+OH→C 3H5+H2O (R1b) k1a(200K ≤ T ≤ 950 K;1 bar ≤ P) = 1.45×10-11 (T/K)-0.18e 460K/Tcm3 molecule-1s-1 k -1a(200 K ≤ T ≤ 950 K; 1 bar ≤ P) = 5.74×10 12e-12690K/Ts-1 k1b(200 K ≤ T ≤ 950 K) = 1.63×10-18 (T/K)2.36e -725K/T cm3 molecule-1s-1. © by Oldenbourg Wissenschaftsverlag, München.

More Details

Analysis of advanced biofuels

Taatjes, Craig A.; Dec, John E.; Yang, Yi Y.; Welz, Oliver W.

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

More Details
55 Results
55 Results