Publications

97 Results

Search results

Jump to search filters

A silicon singlet–triplet qubit driven by spin-valley coupling

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Rudolph, Martin; Ward, Daniel R.; Carroll, Malcolm S.; Luhman, Dwight R.

Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/fα dependence consistent with α ~ 0.7, over 9 orders of magnitude in noise frequency.

More Details

A Quantum Analog Coprocessor for Correlated Electron Systems Simulation

Baczewski, Andrew D.; Brickson, Mitchell I.; Campbell, Quinn; Jacobson, Noah T.; Maurer, Leon

Analog quantum simulation is an approach for studying physical systems that might otherwise be computationally intractable to simulate on classical high-performance computing (HPC) systems. The key idea behind analog quantum simulation is the realization of a physical system with a low-energy effective Hamiltonian that is the same as the low-energy effective Hamiltonian of some target system to be studied. Purpose-built nanoelectronic devices are a natural candidate for implementing the analog quantum simulation of strongly correlated materials that are otherwise challenging to study using classical HPC systems. However, realizing devices that are sufficiently large to study the properties of a non-trivial material system (e.g., those described by a Fermi-Hubbard model) will eventually require the fabrication, control, and measurement of at least 0(10) quantum dots, or other engineered quantum impurities. As a step toward large-scale analog or digital quantum simulation platforms based on nanoelectronic devices, we propose a new approach to analog quantum simulation that makes use of the large Hilbert space dimension of the electronic baths that are used to adjust the occupancy of one or a few engineered quantum impurities. This approach to analog quantum simulation allows us to study a wide array of quantum impurity models. We can further augment the computational power of such an approach by combining it with a classical computer to facilitate dynamical mean-field theory (DMFT) calculations. DMFT replaces the solution of a lattice impurity problem with the solution of a family of localized impurity problems with bath couplings that are adjusted to satisfy a self-consistency condition between the two models. In DMFT, the computationally challenging task is the high-accuracy solution of an instance of a quantum impurity model that is determined self-consistently in coordination with a mean-field calculation. We propose using one or a few engineered quantum impurities with adjustable couplings to baths to realize an analog quantum coprocessor that effects the solution of such a model through measurements of a physical quantum impurity, operating in coordination with a classical computer to achieve a self-consistent solution to a DMFT calculation. We focus on implementation details relevant to a number of technologies for which Sandia has design, fabrication, and measurement expertise. The primary technical advances outlined in this report concern the development of a supporting modeling capability. As with all analog quantum simulation platforms, the successful design and operation of individual devices depends critically on one's ability to predict the effective low-energy Hamiltonian governing its dynamics Our project has made this possible and lays the foundation for future experimental implementations.

More Details

A silicon metal-oxide-semiconductor electron spin-orbit qubit

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.

More Details

Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime

Nanoscale

Chou, C.T.; Jacobson, Noah T.; Moussa, J.E.; Baczewski, Andrew D.; Chuang, Y.; Liu, C.Y.; Li, J.Y.; Lu, Tzu M.

Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 1011 cm-2, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.

More Details

Spectroscopy of Multielectrode Tunnel Barriers

Physical Review Applied

Carroll, M.S.; Shirkhorshidian, Amir; Gamble, John K.; Maurer, Leon; Carr, Stephen M.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Nielsen, Erik N.; Jacobson, Noah T.; Lilly, Michael

Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the specific regime into which current extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multielectrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at approximately T=4 K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Büttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. Effects on threshold, such as metal-insulator transition and lateral confinement, are included because they influence parameters that determine barrier height and width (e.g., the Fermi energy and local electric fields). We compare these results to semiclassical solutions of Poisson's equation and find them to agree qualitatively. Finally, this characterization technique is applied to an efficient lateral tunnel barrier design that does not require an electrode directly above the barrier region in order to estimate barrier heights and widths.

More Details

High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

Physical Review. X

Carroll, M.S.; Harvey-Collard, Patrick; Anjou, Martin'; Rudolph, Martin; Jacobson, Noah T.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Coish, William; Pioro-Ladriere, Michel

The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)–(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. As a result, it further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

More Details

Coherent coupling between a quantum dot and a donor in silicon

Nature Communications

Carroll, M.S.; Harvey-Collard, Patrick; Jacobson, Noah T.; Rudolph, Martin; Wendt, Joel R.; Pluym, Tammy; Foulk, James W.; Pioro-Ladriere, Michel; Dominguez, Jason

Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show that the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.

More Details

Probing low noise at the MOS interface with a spin-orbit qubit

arXiv.org

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce a spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

Technical Digest - International Electron Devices Meeting, IEDM

Rudolph, Martin; Jock, Ryan M.; Jacobson, Noah T.; Wendt, Joel R.; Pluym, Tammy; Dominguez, Jason; Ten Eyck, Gregory A.; Manginell, Ronald; Lilly, Michael; Carroll, M.S.; Harvey-Collard, P.

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Valley splitting of single-electron Si MOS quantum dots

Applied Physics Letters

Foulk, James W.; Harvey-Collard, Patrick; Jacobson, Noah T.; Baczewski, Andrew D.; Nielsen, Erik N.; Maurer, Leon; Montano, Ines; Rudolph, Martin; Carroll, M.S.; Yang, C.H.; Rossi, A.; Dzurak, A.S.; Muller, Richard P.

Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.

More Details

Nuclear-driven electron spin rotations in a single donor coupled to a silicon quantum dot

Science

Carroll, M.S.; Harvey-Collard, Patrick; Jacobson, Noah T.; Rudolph, Martin; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Foulk, James W.; Lilly, Michael; Pioro-Ladriere, Michel

Silicon chips hosting a single donor can be used to store and manipulate one bit of quantum information. However, a central challenge for realizing quantum logic operations is to couple donors to one another in a controllable way. To achieve this, several proposals rely on using nearby quantum dots (QDs) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31 P donor and an enriched 28 Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction on the donor can drive coherent rotations between singlet and triplet electron spin states of the QD-donor system. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. Furthermore, the combination of single-nucleus-driven rotations and voltage-tunable exchange provides every key element for future all-electrical control of spin qubits, while requiring only a single QD and no additional magnetic field gradients

More Details
97 Results
97 Results