Publications

17 Results
Skip to search filters

Operations, maintenance, and cost considerations for PV+Storage in the United States

Jackson, Nicole D.; Gunda, Thushara G.; Gayoso, Natalie G.; Desai, Jal D.; Walker, Andy W.

Battery storage systems are increasingly being installed at photovoltaic (PV) sites to address supply-demand balancing needs. Although there is some understanding of costs associated with PV operations and maintenance (O&M), costs associated with emerging technologies such as PV plus storage lack details about the specific systems and/or activities that contribute to the cost values. This study aims to address this gap by exploring the specific factors and drivers contributing to utility-scale PV plus storage systems (UPVS) O&M activities costs, including how technology selection, data collection, and related and ongoing challenges. Specifically, we used semi-structured interviews and questionnaires to collect information and insights from utility-scale owners and operators. Data was collected from 14 semi-structured interviews and questionnaires representing 51.1 MW with 64.1 MWh of installed battery storage capacity within the United States (U.S.). Differences in degradation rate, expected life cycle, and capital costs are observed across different storage technologies. Most O&M activities at UPVS related to correcting under-performance. Fires and venting issues are leading safety concerns, and owner operators have installed additional systems to mitigate these issues. There are ongoing O&M challenges due the lack of storage-specific performance metrics as well as poor vendor reliability and parts availability. Insights from this work will improve our understanding of O&M consideration at PV plus storage sites.

More Details

Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States

Applied Energy

Jackson, Nicole D.; Gunda, Thushara G.

The global energy system is undergoing significant changes, including a shift in energy generating technologies to more renewable energy sources. However, the dependence of renewable energy sources on local environmental conditions could also increase disruptions in service through exposures to compound, extreme weather events. By fusing three diverse datasets (operations and maintenance tickets, weather data, and production data), this analysis presents a novel methodology to identify and evaluate performance impacts arising from extreme weather events across diverse geographical regions. Text analysis of maintenance tickets identified snow, hurricanes, and storms as the leading extreme weather events affecting photovoltaic plants in the United States. Statistical techniques and machine learning were then implemented to identify the magnitude and variability of these extreme weather impacts on site performance. Impacts varied between event and non-event days, with snow events causing the greatest reductions in performance (54.5%), followed by hurricanes (12.6%) and storms (1.1%). Machine learning analysis identified key features in determining if a day is categorized as low performing, such as low irradiance, geographic location, weather features, and site size. This analysis improves our understanding of compound, extreme weather event impacts on photovoltaic systems. These insights can inform planning activities, especially as renewable energy continues to expand into new geographic and climatic regions around the world.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details
17 Results
17 Results