Publications

9 Results
Skip to search filters

Substrate removal for ultra efficient silicon heater-modulators

6th IEEE Photonics Society Optical Interconnects Conference, OI 2017

Martinez, Nicolas J.D.; DeRose, Christopher T.; Jarecki, Robert L.; Starbuck, Andrew L.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.

We present our experimental results of ultra efficient (up to 2.16 nm/mW) thermally tunable modulators with n-Type heaters and the Si substrate removed. To our knowledge, this is the most efficient thermally tunable modulator demonstrated at 1550nm to date. We include results of externally heated modulators with commensurate performance enhancements through substrate removal.

More Details

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Optics Express

Martinez, Nicolas J.D.; DeRose, Christopher T.; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Trotter, Douglas C.; Davids, Paul D.

We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details
9 Results
9 Results