From Simple Epoxy Adhesives to a Foundation in Materials Aging
Abstract not provided.
Abstract not provided.
Abstract not provided.
Macromolecular Materials and Engineering
The use of self-assembling, pre-polymer materials in 3D printing is rare, due to difficulties of facilitating printing with low molecular weight species and preserving their reactivity and/or functions on the macroscale. Akin to 3D printing of small molecules, examples of extrusion-based printing of pre-polymer thermosets are uncommon, arising from their limited rheological tuneability and slow reactions kinetics. The direct ink write (DIW) 3D printing of a two-part resin, Epon 828 and Jeffamine D230, using a self-assembly approach is reported. Through the addition of self-assembling, ureidopyrimidinone-modified Jeffamine D230 and nanoclay filler, suitable viscoelastic properties are obtained, enabling 3D printing of the epoxy–amine pre-polymer resin. A significant increase in viscosity is observed, with an infinite shear rate viscosity of approximately two orders of magnitude higher than control resins, in addition to, an increase in yield strength and thixotropic behavior. Printing of simple geometries is demonstrated with parts showing excellent interlayer adhesion, unachievable using control resins.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIChE Journal
Kinetic models have been developed to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI-10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, although it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transition temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. The kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent articles. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2945–2957, 2017.
Conference Proceedings of the Society for Experimental Mechanics Series
Several open-cell flexible foams, including aged polyurethane foams, were mechanically characterized over a temperature range of 40 to 20 °C. Quasi-static compression was performed to obtain the stress-strain behavior of the foams. The stress-strain relation is nonlinear, but typically there is a small range of linear behavior initially. Compressive cyclic loading at different amplitudes and frequencies of interest (20–60 Hz) were applied to measure foam’s hysteresis properties, i.e. stiffness and energy dissipation. The cyclic characterization includes foams with different amount of pre-strains, some are beyond the initial linear range as occurred in many applications.
Abstract not provided.
Bioresource Technology
The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20±4gAFDW/m2/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.
Abstract not provided.
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.
The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIChE Journal
A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Polymer Science
Polymer gels are complex materials used in myriad applications and industries including foods, consumer products, and adhesives. We examine the rheology and adhesion characteristics of three fluorosilicone gels of varying equilibrium modulus. Adhesion is studied in terms of confinement and separation velocity or initial strain rate. Further, the role of debonding mechanism on the adhesion properties is also elucidated. At low initial strain rates or low degrees of confinement, interfacial failure dominates while at high initial strain rates or high degrees of confinement bulk cavitation is the dominant debonding mechanism. We also report for the first time a transition region where both interfacial failure and bulk cavitation are observed. The adhesion results are explained in light of the rheological properties of the gels examined. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014, 131, 40034. Copyright © 2013 Wiley Periodicals, Inc.
We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.
AIChE Journal
Abstract not provided.
AIChE Journal
Abstract not provided.