Publications

Results 1–25 of 40
Skip to search filters

The Science of Battery Degradation

Sullivan, John P.; Fenton, Kyle R.; El Gabaly Marquez, Farid E.; Harris, Charles T.; Hayden, Carl C.; Hudak, Nicholas H.; Jungjohann, Katherine L.; Kliewer, Christopher J.; Leung, Kevin L.; McDaniel, Anthony H.; Nagasubramanian, Ganesan N.; Sugar, Joshua D.; Talin, A.A.; Tenney, Craig M.; Zavadil, Kevin R.

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.

More Details

Cycling-induced changes in the entropy profiles of lithium cobalt oxide electrodes

Journal of the Electrochemical Society

Hudak, Nicholas H.; Davis, Lorie E.; Nagasubramanian, Ganesan N.

Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in their cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 < x < 1 in LixCoO2. Despite significant losses in capacity, the cycling did not result in any change to the overall shape of the entropy profile, indicating retention of the LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. Electrodes cycled at C/5 exhibited a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cycling-induced structural disorder accompanies the kinetic degradation mechanisms.

More Details

Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries

Hudak, Nicholas H.; Huber, Dale L.; Gulley, Gerald G.

The cycling of high-capacity electrode materials for lithium-ion batteries results in significant volumetric expansion and contraction, and this leads to mechanical failure of the electrodes. To increase battery performance and reliability, there is a drive towards the use of nanostructured electrode materials and nanoscale surface coatings. As a part of the Visiting Faculty Program (VFP) last summer, we examined the ability of aluminum oxide and gold film surface coatings to improve the mechanical and cycling properties of vapor-deposited aluminum films in lithium-ion batteries. Nanoscale gold coatings resulted in significantly improved cycling behavior for the thinnest aluminum films whereas aluminum oxide coatings did not improve the cycling behavior of the aluminum films. This summer we performed a similar investigation on vapor-deposited germanium, which has an even higher theoretical capacity per unit mass than aluminum. Because the mechanism of lithium-alloying is different for each electrode material, we expected the effects of coating the germanium surface with aluminum oxide or gold to differ significantly from previous observations. Indeed, we found that gold coatings gave only small or negligible improvements in cycling behavior of germanium films, but aluminum oxide (Al2O3) coatings gave significant improvements in cycling over the range of film thicknesses tested.

More Details

Mixed-metal, structural, and substitution effects of polyoxometalates on electrochemical behavior in a redox flow battery

Electrochimica Acta

Pratt, Harry P.; Pratt, William R.; Fang, Xikui; Hudak, Nicholas H.; Anderson, Travis M.

A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34) 2(OH)311-, cycled between (SiFe 3W9(OH)3O34)2(OH) 311-/(SiFe3W9(OH)3O 34)2(OH)314-and (SiFe 3W9(OH)3O34)2(OH) 317-/(SiFe3W9(OH)3O 34)2(OH)314- for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O 194-, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194-had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W 4O194-was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

More Details

Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

Journal of Power Sources

Hudak, Nicholas H.

A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

More Details

Rechargeable aluminum batteries with conducting polymers as positive electrodes

Hudak, Nicholas H.

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

More Details

A polyoxometalate flow battery

Journal of Power Sources

Pratt, Harry P.; Hudak, Nicholas H.; Anderson, Travis M.

A redox flow battery utilizing two, three-electron polyoxometalate redox couples (SiVV3WVI9O407–/SiVIV3WVI9O4010- and SiVIV3WVI9O4010-/SiVIV3WV3WVI6O4013-) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures.

More Details
Results 1–25 of 40
Results 1–25 of 40