Publications

63 Results
Skip to search filters

Corrosion Monitors for Embedded Evaluation

Robinson, Alex L.; Pfeifer, Kent B.; Casias, Adrian L.; Howell, Stephen W.; Sorensen, Neil R.; Missert, Nancy A.

We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

More Details

Characterization of fire hazards of aged photovoltaic balance-of-systems connectors

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Schindelholz, Eric J.; Yang, Benjamin B.; Armijo, Kenneth M.; McKenzie, Bonnie B.; Taylor, Jason M.; Sorensen, Neil R.; Lavrova, Olga A.

Three balance of systems (BOS) connector designs common to industry were investigated as a means of assessing reliability from the perspective of arc fault risk. These connectors were aged in field and laboratory environments and performance data captured for future development of a reliability model. Comparison of connector resistance measured during damp heat, mixed flowing gas and field exposure in a light industrial environment indicated disparities in performance across the three designs. Performance was, in part, linked to materials of construction. A procedure was developed to evaluate new and aged connectors for arc fault risk and tested for one of the designs. Those connectors exposed to mixed flowing gas corrosion exhibited considerable Joule heating that may enhance arcing behavior, suggesting temperature monitoring as a potential method for arc fault prognostics. These findings, together with further characterization of connector aging, can provide operators of photovoltaic installations the information necessary to develop a data-driven approach to BOS connector maintenance as well as opportunities for arc fault prognostics.

More Details

PV Systems Reliability Final Technical Report

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay; Armijo, Kenneth M.; Gonzalez, Sigifredo G.; Schindelholz, Eric J.; Sorensen, Neil R.; Yang, Ben Y.

The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

More Details

Arc fault risk assessment and degradation model development for photovoltaic connectors

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Yang, Benjamin B.; Armijo, Kenneth M.; Harrison, Richard K.; Thomas, Kara E.; Johnson, Jay; Taylor, Jason M.; Sorensen, Neil R.

This work investigates balance of systems (BOS) connector reliability from the perspective of arc fault risk. Accelerated tests were performed on connectors for future development of a reliability model. Thousands of hours of damp heat and atmospheric corrosion tests found BOS connectors to be resilient to corrosion-related degradation. A procedure was also developed to evaluate new and aged connectors for arc fault risk. The measurements show that arc fault risk is dependent on a combination of materials composition as well as design geometry. Thermal measurements as well as optical emission spectroscopy were also performed to further characterize the arc plasma. Together, the degradation model, arc fault risk assessment technique, and characterization methods can provide operators of photovoltaic installations information necessary to develop a data-driven plan for BOS connector maintenance as well as identify opportunities for arc fault prognostics.

More Details

A reliability and availability sensitivity study of a large photovoltaic system

Collins, Elmer W.; Mundt, Michael J.; Stein, Joshua S.; Sorensen, Neil R.; Granata, Jennifer E.; Quintana, Michael A.

A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

More Details

Fatigue behavior of thin Cu foils and Cu/Kapton flexible circuits

Materials Science and Technology Conference and Exhibition, MS and T'08

Beck, David F.; Susan, D.F.; Sorensen, Neil R.; Thayer, Gayle E.

A series of thin electrodeposited Cu foils and Cu foil/Kapton flex circuits were tested in bending fatigue according to ASTM E796 and IPC-TM-650. The fatigue behavior was analyzed in terms of strain vs. number of cycles to failure, using a Coffin-Manson approach. The effects of Cu foil thickness and Cu trace width are discussed. The Cu foils performed as expected and the Cu foil/Kapton® (E.I. du Pont de Nemours and Company, Wilmington, DE) composites showed significant improvement in fatigue lifetime due to the composite strengthening effect of the Kapton layers. However, the flex circuits showed more scatter in fatigue life based on electrical continuity. The effect of the Kapton layers manifests itself by significantly more widespread microcracking in the Cu traces and the extent of microcracking depended on the strain level. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2008 MS&T'08 ®.

More Details

Modeling pore corrosion in normally open gold- plated copper connectors

Moffat, Harry K.; Sun, Amy C.; Enos, David E.; Serna, Lysle M.; Sorensen, Neil R.; Battaile, Corbett C.

The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

More Details

Failure analysis for the dual input quad NAND gate CD4011 under dormant storage conditions

Sorensen, Neil R.

Several groups of plastic molded CD4011s were electrically tested as part of an Army dormant storage program. These parts had been in storage in missile containers for 4.5 years, and were electrically tested annually. Eight of the parts (out of 1200) failed the electrical tests and were subsequently analyzed to determine the cause of the failures. The root cause was found to be corrosion of the unpassivated Al bondpads. No significant attack of the passivated Al traces was found. Seven of the eight failures occurred in parts stored on a pre-position ship (the Jeb Stuart), suggesting a link between the external environment and observed corrosion.

More Details

An investigation of corrosion in semiconductor bridge explosive devices

Sorensen, Neil R.; Klassen, Sandra E.

In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.

More Details

High temperature oxidation of 304L stainless steel and its effects on glass-to-metal joining

Proceedings of the 3rd International Brazing and Soldering Conference

Susan, D.F.; Van Den Avyle, James A.; Monroe, Saundra L.; Sorensen, Neil R.; McKenzie, Bonnie B.; Michael, Joseph R.; Christensen, J.E.; Walker, Charles A.

An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to glass/metal joining to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO 2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr 2O 3, MnCr 2O 4 spinel, and SiO 2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass/metal seal behavior. The objectives of this work were to characterize the oxidation kinetics, the oxide morphology and composition, and the stainless steel attributes that lead to robust glass/metal seals. The oxidation kinetics were determined by thermogravimetric (TG) analysis and the oxide layers were characterized using metallography, SEM, focused ion beam (FIB) analysis, and image analysis. The results show that poor sealing behavior is associated with slower oxidation kinetics and a more continuous layer of SiO 2 at the metal/oxide interface. In addition, the effects of 304L heat composition on oxidation behavior will be discussed. Copyright © 2006 ASM International®.

More Details

The effects of 304L stainless steel pre-oxidation on bonding to alkali barium silicate glass

Ceramic Engineering and Science Proceedings

Susan, D.F.; Van Den Avyle, James A.; Monroe, Saundra L.; Sorensen, Neil R.; McKenzie, Bonnie B.; Michael, Joseph R.; Christensen, J.E.; Walker, Charles A.

An oxidation treatment, often termed "pre-oxidation", is performed on austenitic stainless steel prior to joining to alkali barium silicate glass to produce hermetic seals. The resulting thin oxide acts as a transitional layer and a source of Cr and other elements which diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO2 atmosphere to avoid iron oxide formation and the final oxide is composed of Cr2O3, MnCr2O4 spinel, and SiO2. Significant heat-to-heat variations in the oxidation behavior of 304L stainless steel have been observed, which result in inconsistent glass-to-metal (GTM) seal behavior. The objectives of this work were to characterize the stainless steel pre-oxidized layer and the glass/oxide/304L interface region after glass sealing. The 304L oxidation kinetics were determined by thermogravimetric (TG) analysis and the glass/metal seals characteristics were studied using sessile drop tests, in which wetting angles were measured and glass adhesion was analyzed. The pre-oxidized layers and glass/metal interface regions were characterized using metallography, focused ion beam (FIB) sectioning, scanning and transmission electron microscopy, and electron probe microanalysis (EPMA). The results show that poor glass sealing behavior is associated with a more continuous layer of SiO 2 at the metal/oxide interface.

More Details

Failure analysis for the dual input quad NAND fate CD4011 under dormant storage conditions

Sorensen, Neil R.

Several groups of plastic molded CD4011 were electrically tested as part of an Army dormant storage program. For this test, parts had been in storage in missile containers for 4.5 years. Eight of the parts (out of 1200) failed the electrical tests and were subsequently analyzed to determine the cause of the failures. The root cause was found to be corrosion of the unpassivated Al bondpads. No significant attack of the passivated Al traces was found. Seven of the eight failures occurred in parts stored on a preposition ship (Jeb Stuart), suggesting a link between the external environment and observed corrosion.

More Details

A Modeling Approach for Predicting the Effect of Corrosion on Electrical-Circuit Reliability

Braithwaite, J.W.; Braithwaite, J.W.; Sorensen, Neil R.; Robinson, David G.; Chen, Ken S.; Bogdan, Carolyn W.

An analytical capability is being developed that can be used to predict the effect of corrosion on the performance of electrical circuits and systems. The availability of this ''toolset'' will dramatically improve our ability to influence device and circuit design, address and remediate field occurrences, and determine real limits for circuit service life. In pursuit of this objective, we have defined and adopted an iterative, statistical-based, top-down approach that will permit very formidable and real obstacles related to both the development and use of the toolset to be resolved as effectively as possible. An important component of this approach is the direct incorporation of expert opinion. Some of the complicating factors to be addressed involve the code/model complexity, the existence of large number of possible degradation processes, and an incompatibility between the length scales associated with device dimensions and the corrosion processes. Two of the key aspects of the desired predictive toolset are (1) a direct linkage of an electrical-system performance model with mechanistic-based, deterministic corrosion models, and (2) the explicit incorporation of a computational framework to quantify the effects of non-deterministic parameters (uncertainty). The selected approach and key elements of the toolset are first described in this paper. These descriptions are followed by some examples of how this toolset development process is being implemented.

More Details

Mechanisms of Atmospheric Copper Sulfidation and Evaluation of Parallel Experimentation Techniques

Barbour, J.C.; Breiland, William G.; Moffat, Harry K.; Sullivan, John P.; Campin, Michael J.; Wright, Alan F.; Missert, Nancy A.; Braithwaite, J.W.; Zavadil, Kevin R.; Sorensen, Neil R.; Lucero, Samuel J.

A physics-based understanding of material aging mechanisms helps to increase reliability when predicting the lifetime of mechanical and electrical components. This report examines in detail the mechanisms of atmospheric copper sulfidation and evaluates new methods of parallel experimentation for high-throughput corrosion analysis. Often our knowledge of aging mechanisms is limited because coupled chemical reactions and physical processes are involved that depend on complex interactions with the environment and component functionality. Atmospheric corrosion is one of the most complex aging phenomena and it has profound consequences for the nation's economy and safety. Therefore, copper sulfidation was used as a test-case to examine the utility of parallel experimentation. Through the use of parallel and conventional experimentation, we measured: (1) the sulfidation rate as a function of humidity, light, temperature and O{sub 2} concentration; (2) the primary moving species in solid state transport; (3) the diffusivity of Cu vacancies through Cu{sub 2}S; (4) the sulfidation activation energies as a function of relative humidity (RH); (5) the sulfidation induction times at low humidities; and (6) the effect of light on the sulfidation rate. Also, the importance of various sulfidation mechanisms was determined as a function of RH and sulfide thickness. Different models for sulfidation-reactor geometries and the sulfidation reaction process are presented.

More Details
63 Results
63 Results