Publications

28 Results
Skip to search filters

CINT 2020 Strategic Plan

Shinn, Neal D.

CINT’s role is to enable world-leading science towards realizing these benefits and our strategic objectives describe what is needed to deliver on this promise. As a vibrant partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL), CINT leverages the unmatched scientific and engineering expertise of our host DOE Laboratories in an Office of Science open-access user facility to benefit hundreds of researchers annually. We have world-leading scientific expertise in four thrust areas, as described in section 1, and specialized capabilities to create, characterize and understand nanomaterials in increasingly complex integrated environments. Building upon these current strengths, we identify some of the capabilities and expertise that the nanoscience community will need in the future and that CINT is well positioned to develop and offer as a user facility. These include an expanding portfolio of our signature Discovery Platforms that can be used alone or as sophisticated “experiments within an experiment”; novel synthetic approaches for exquisitely heterostructured nanowires, nanoparticles and quasi-two-dimensional materials; ultra-high resolution spectroscopic techniques of nanomaterial dynamics; in situ microscopies that provide realtime, spatially-resolved structure/property information for increasingly complex materials systems; advanced simulation techniques for integrated nanomaterials; and multi-scale theory for interfaces and dynamics.

More Details

Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems

Journal of Vacuum Science Technology B

Mayer, T.M.; De Boer, Maarten P.; Shinn, Neal D.; Clews, Peggy J.; Michalske, Terry A.

We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.

More Details
28 Results
28 Results