We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.
We have compared simulations using solutions of Poisson's equation to detailed capacitance measurements on a double quantum dot structure. We tabulate the results and show which cases show good agreement and which do not. The capacitance values are also compared to those calculated by a solution of Laplace's equation. Electron density is plotted and discussed. In order to understand relevant potential barriers we compare simulations at 50 Kelvin to simulations at 15 Kelvin. We show that the charge density does not differ greatly, but that the conduction band potential does. However, a method of estimating the potential at 0 Kelvin based on the charge distribution at 50 Kelvin is shown to be close to the potential at 15 Kelvin. This method was used to estimate potential barriers at 0 Kelvin in two quantum dot structures.
We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.
Silicon is an ideal system for investigating single electron or isolated donor spins for quantum computation, due to long spin coherence times. Enhancement mode strained-silicon/silicon germanium (sSi/SiGe) devices would offer an as-yet untried path toward electron or electron/donor quantum dot systems. Thin, undoped SiGe dielectrics allow tight electrostatic confinement, as well as potential Lande g-factor engineered spin manipulation. In this talk we summarize recent progress toward sSi/SiGe enhancement mode devices on sSi on insulator, including characterization with X-ray diffraction and atomic force microscopy, as well as challenges faced and progress on integration of either top-down and bottom-up donor placement approaches in a sSi/SiGe enhancement mode structure.