Publications

20 Results
Skip to search filters

Inhibition of Microtubule Depolymerization by Osmolytes

Biomacromolecules

Bachand, George B.; Jain, Rishi; Ko, Randy; Bouxsein, Nathan F.; Vandelinder, Virginia A.

Microtubule dynamics play a critical role in the normal physiology of eukaryotic cells as well as a number of cancers and neurodegenerative disorders. The polymerization/depolymerization of microtubules is regulated by a variety of stabilizing and destabilizing factors, including microtubule-associated proteins and therapeutic agents (e.g., paclitaxel, nocodazole). Here we describe the ability of the osmolytes polyethylene glycol (PEG) and trimethylamine-N-oxide (TMAO) to inhibit the depolymerization of individual microtubule filaments for extended periods of time (up to 30 days). We further show that PEG stabilizes microtubules against both temperature- and calcium-induced depolymerization. Our results collectively suggest that the observed inhibition may be related to combination of the kosmotropic behavior and excluded volume/osmotic pressure effects associated with PEG and TMAO. Taken together with prior studies, our data suggest that the physiochemical properties of the local environment can regulate microtubule depolymerization and may potentially play an important role in in vivo microtubule dynamics.

More Details

Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

Nanoscale

Paxton, Walter F.; Bouxsein, Nathan F.; Henderson, Ian M.; Gomez, Andrew G.; Bachand, George B.

We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

More Details

Directed self-assembly of 1D microtubule nano-arrays

RSC Advances

Bachand, Marlene B.; Bouxsein, Nathan F.; Cheng, S.; Von Hoyningen-Huene, S.J.; Stevens, Mark J.; Bachand, George B.

Microtubules (MTs) are biological polymer filaments that display unique polymerization dynamics, and serve as inspiration for developing synthetic nanomaterials that exhibit similar assembly-derived behaviours. Here we explore an assembly process in which extended 1D nano-arrays (NAs) are formed through the directed, head-to-tail self-assembly of MT filaments. In particular, we demonstrate that the elongation of NAs over time is due to directed self-assembly of MTs by a process that is limited by diffusion and follows second-order rate kinetics. We further described a mechanism, both experimental and through molecular dynamics simulations, where stable junctions among MT building blocks are formed by alignment and adhesion of opposing filament ends, which is followed by formation of a stable junction through the incorporation of free tubulin and the removal of lattice vacancies. The fundamental principles described in this directed self-assembly process provide a promising basis for new approaches to manufacturing complex, heterostructured nanocomposites.

More Details
20 Results
20 Results